Skip to main content
Log in

The Sites of Molecular and Dissociative Hydrogen Adsorption in High-Silica Zeolites Modified with Zinc Ions. III DRIFT Study of H2 Adsorption by the Zeolites with Different Zinc Content and Si/Al Ratios in the Framework

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

study of dihydrogen adsorbed at 77 K by the zinc-modified hydrogen forms of mordenite and ZSM-5 zeolites with the different Si/Al ratios in the framework indicated the existence of several adsorption sites connected with the modifying zinc ions. The fraction of the sites of the strongest perturbation of adsorbed molecular hydrogen with the H–H stretching frequency of ca. 3930–3950 cm-1 is the highest at the highest Si/Al ratios of 41 or 80. These sites dissociatively adsorb hydrogen at moderately elevated temperatures. Adsorption of hydrogen with the higher H–H stretching frequency of about 3970–4000 cm-1 predominates at the lower Si/Al ratios. It does not result in the dissociation of adsorbed molecules. It was concluded that the most active sites are most probably connected with the zinc ions, which compensate two distantly separated negatively charged [AlO4]- tetrahedra localized in the adjacent five- or six-membered rings on the walls of the large channels of the pentasil's framework. The sites of the weaker perturbation of adsorbed hydrogen are most probably connected with Zn+2 ions at the conventional exchangeable cationic positions with two aluminum atoms in the same five- or six-membered ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mole and J. R. Anderson, J. Creer, Appl. Catal. 17 (1985) 141.

    Google Scholar 

  2. Y. Ono and K. Kanae, J. Chem. Soc., Faraday Trans. 67 (1991) 669.

    Google Scholar 

  3. E. Iglesia and J. E. Baumgartner, Catal. Lett. 21 (1993) 55.

    Google Scholar 

  4. J. A. Biscardi and E. Iglesia, Catal. Today 31 (1996) 207.

    Google Scholar 

  5. H. Berndt, G. Leitz, B. Lucke and Volter, J. Appl. Catal. 146 (1996) 351, 365.

    Google Scholar 

  6. E. Iglesia, J. E. Baumgartner and G. L. Price, J. Catal. 134 (1992) 549.

    Google Scholar 

  7. V. I. Jakerson, T. V. Vasina, L. I. Lafer, V. P. Sytnyk, G. L. Dykh, A. V. Makhov and K. M. Minachev, Catal. Lett. 3 (1998) 339.

    Google Scholar 

  8. El-M. El-Malki, R. A. van Santen and W. M. H. Sachtler, J. Phys. Chem. 103 (1999) 4611.

    Google Scholar 

  9. J. A. Biscardi, G. D. Meizner and E. Iglesia, J. Catal. 179 (1998) 192.

    Google Scholar 

  10. X. Feng and W. K. Hall, Catal. Lett. 46 (1997) 11.

    Google Scholar 

  11. V. B. Kazansky, V. Yu. Borovkov, A. I. Serykh, R. A. van Santen and B. G. Anderson, Catal. Lett. 66 (2000) 39.

    Google Scholar 

  12. V. B. Kazansky, A. I. Serykh, R. A. van Santen and B. G. Anderson, Catal. Lett. 74 (2001) 55.

    Google Scholar 

  13. G. Ghiotti, A. Chiorino and F. Boccuzzi, Surf. Sci. 287/288 (1993) 228.

    Google Scholar 

  14. R. J. Kokes, Acc. Chem. Res. 6 (1973) 226.

    Google Scholar 

  15. M. J. Rice, A. K. Chakraborty and A. T. Bell, J. Phys. Chem. B104 (2000) 9987.

    Google Scholar 

  16. A. T. Bell, in Catalysis by Unique Metal Ion Structures in Solid Matrixes, G. Genti, B. Wichtelowa and A. T. Bell (eds) (Kluwer Academic Publishers, Dordrecht–Boston–London, 2000) p. 55.

    Google Scholar 

  17. G. Engelhardt, in Introduction to Zeolite Science and Practice, Chapter 8, H. van Bekkum, E. M. Flaningen and J. C. Jansen (eds) (Elsevier, 1991) p. 285.

  18. V. B. Kazansky, V.Yu. Borovkov, A. I. Serykh, R. A. van Santen and P. J. Stobbelar, PCCP 1 (2000) 2881.

    Google Scholar 

  19. J. N. Armor, in Catalysis by Unique Metal Ion Structures in Solid Matrixes, G. Genti, B. Wichtelowa and A. T. Bell (eds) (Kluwer Academic Publishers, Dordrecht–Boston–London, 2000), p. 21, p. 25.

    Google Scholar 

  20. H. Y. Chen, El. M. El. Malki, X. Wang and W. M. H. Sachtler, ibid, p. 75.

  21. T. Beutel, J. Y. Sarkany and W. M. H. Sachtler, J. Phys. Chem. 100 (1996) 845.

    Google Scholar 

  22. G. D. Lei, B. J. Adelman, J. Sarkany and W. M. H. Sachtler, Appl. Catal. B112 (1995) 245.

    Google Scholar 

  23. W. Grunert, N. W. Hayes, R. W. Joiner, E. S. Spiro, M. R. H. Siddiqui and G. N. J. Baeva, J. Phys. Chem. 98 (1994) 10832.

    Google Scholar 

  24. R. A. van Santen, G. M. Ghidomirov, A. A. Shubin, A. L. Yakovlev, L. A. M. M. Barbosa, in Catalysis by Unique Metal Ion Structures in Solid Matrixes, G. Genti, B. Wichterlowa and A. T. Bell (eds) (Kluwer Academic Publishers, Dordrecht-Boston-London, 2000) p. 187.

    Google Scholar 

  25. A. L. Yakovlev, A. A. Shubin, G. M. Ghidomirov and R. A. van Santen, Catal. Lett. 70 (2000) 175.

    Google Scholar 

  26. V. B. Kazansky, A. I. Serykh and A. T. Bell, Catal. Lett. 83 (2002) 191.

    Google Scholar 

  27. A. A. Shubin, G. M. Zhidomirov, V. B. Kazansky and R. A. van Santen, Catal. Lett.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazansky, V., Serykh, A., Anderson, B. et al. The Sites of Molecular and Dissociative Hydrogen Adsorption in High-Silica Zeolites Modified with Zinc Ions. III DRIFT Study of H2 Adsorption by the Zeolites with Different Zinc Content and Si/Al Ratios in the Framework. Catalysis Letters 88, 211–217 (2003). https://doi.org/10.1023/A:1024026225712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024026225712

Navigation