Skip to main content
Log in

Calcium phosphate nucleation on surface-modified PTFE membranes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Highly porous PTFE membranes are currently being used in facial reconstructive surgery. The present study aims at improving this biomaterial through creating a more bioactive surface by introducing ionic groups onto the surface. The unmodified PTFE membrane does not induce inorganic growth after immersion in simulated body fluid (SBF) for up to 4 weeks. Copolymeric grafting with acrylic acid (AAc) by means of gamma irradiation and subsequent in vitro testing in SBF reveals that this copolymer initially acts as an ion-exchange material and subsequently induces growth of a calcium phosphate phase (Ca/P=2.7) when large amounts (15%) of pAAc are introduced onto the membrane surface. This copolymer is not expected to function well from a biomaterials perspective since SEM showed the pores on the surface to be partly blocked. In contrast, the surface of monoacryloxyethyl phosphate (MAEP)-modified samples is altered at a molecular level only. Yet the modified materials are able to induce calcium phosphate nucleation when the external surface coverage is 44% or above. The initial inorganic growth on these membranes in SBF has a (Ca+Mg)/P ratio of 1.1 (presumably Brushite or Monetite). The secondary growth, possibly calcium-deficient apatite or tricalcium phosphate, has a (Ca+Mg)/P ratio of 1.5. This result is a promising indicator of a bioactive biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ikada, Biomaterials 15 (1994) 725.

    Google Scholar 

  2. B. Kasemo and J. Lausmaa, Environ. Health Perspect. 102 (1994) 41.

    Google Scholar 

  3. O. N. Tretinnikov, K. Kato and Y. Ikada, J. Biomed. Mater. Res. 28 (1994) 1365.

    Google Scholar 

  4. S. Kamei, N. Tomita, S. Tamai, K. Kato and Y. Ikada, ibid. 37 (1997) 384.

    Google Scholar 

  5. E. Dalas, J. K. Kallitsis and P. G. Koutsoukos, Langmuir 7 (1991) 1822.

    Google Scholar 

  6. K. James, H. Levene, J. R. Parsons and J. Kohn, Biomaterials 20 (1999) 2203.

    Google Scholar 

  7. S. H. Li, Q. Lui, J. R. de Wijn, B. L. Zhou and K. de Groot, ibid. 18 (1997) 389.

    Google Scholar 

  8. M. Tanahashi and T. Matsuda, J. Biomed. Mater. Res. 34 (1997) 305.

    Google Scholar 

  9. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro, ibid. 24 (1990) 721.

    Google Scholar 

  10. Y. Tamada, T. Furuzono, T. Taguchi, A. Kishida and M. Akashi, J. Biomater. Sci. Polymer Edn. 10 (1999) 787.

    Google Scholar 

  11. M. R. Mucalo, Y. Yokogawa, T. Suzuki, Y. Kawamoto, F. Nagata and K. Nishizawa, J. Mater. Sci. Mater. Med. 6 (1995) 658.

    Google Scholar 

  12. M. R. Mucalo, Y. Yokogawa, M. Toriyama, T. Suzuki, Y. Kawamoto, F. Nagata and K. Nishizawa, ibid. 6 (1995) 597.

    Google Scholar 

  13. H. M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, ibid. 8 (1997) 341.

    Google Scholar 

  14. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura and T. Yamamuro, ibid. 4 (1993) 127.

    Google Scholar 

  15. M. M. Pereira, A. E. Clark and L. L. Hench, J. Am. Ceram. Soc. 78 (1995) 2463.

    Google Scholar 

  16. A. L. Oliveira, C. Elvira, R. L. Reis, B. Vazquez and J. San Roman, J. Mater. Sci. Mater. Med. 10 (1999) 827.

    Google Scholar 

  17. R. L. Reis, A. M. Cunha, M. H. Fernandes and R. N. Correia, ibid. 8 (1997) 897.

    Google Scholar 

  18. M. Hamadouche, A. Meunier, D. C. Greenspan, C. Blanchat, J. P. Zhong, G. P. La Torre and L. Sedel, J. Biomed. Mater. Res. 52 (2000) 422.

    Google Scholar 

  19. C. S. Maas, D. R. Gnepp and J. Bumpous, Arch. Otolaryngol. Head Neck Surg. 119 (1993) 1008.

    Google Scholar 

  20. A. Piattelli, A. Scarano and M. Paolantonio, Biomaterials 17 (1996) 1725.

    Google Scholar 

  21. A. M. Barbe, J. P. Bartley, A. L. Jacobs and R. A. Johnson, J. Mem. Sci. 145 (1998) 67.

    Google Scholar 

  22. L. Grøndahl, F. Cardona, K. Chiem and E. Wentrup-Byrne, J. Appl. Polym. Sci. 86 (2002) 2550.

    Google Scholar 

  23. A. C. Tas, Biomaterials 21 (2000) 1429.

    Google Scholar 

  24. G. Beamson and D. Briggs, in “The Scienta ESCA300 Database” (Wiley, New York, 1992).

    Google Scholar 

  25. C. Y. Laing and S. Krimm, J. Chem. Phys. 25 (1956) 563.

    Google Scholar 

  26. I. Ishigaki, N. Kamiya, T. Sugo and S. Machi, Polym. J. 10 (1978) 513.

    Google Scholar 

  27. S. Turmanova, A. Trifonov, O. Kalaijiev and G. Kostov, J. Memb. Sci. 127 (1997) 1.

    Google Scholar 

  28. B. O. Fowler, E. C. Moreno and W. E. Brown, Arc. Oral. Biol. 11 (1966) 477.

    Google Scholar 

  29. M. R. Mucalo, M. Toriyama, Y. Yokogawa, T. Suzuki, Y. Kawamoto, F. Nagata and K. Nishizawa, J. Mater. Sci. Mater. Med. 6 (1995) 409.

    Google Scholar 

  30. C. H. Park, S. Y. Nam, Y. M. Lee and W. Kujazski, J. Mem. Sci. 164 (2000) 121.

    Google Scholar 

  31. M. Rätzsch, H. Bucka, S. S. Ivanchev, A. M. Mesh and Khaikine, J. Appl. Polym. Sci. 77 (2000) 711.

    Google Scholar 

  32. Y. Yokogawa, J. Paz Reyes, M. R. Mucalo, M. Toriyama, Y. Kawamoto, T. Suzuki, K. Nishizawa, F. Nagata and T. Kamayama, J. Mater. Sci. Mater. Med. 8 (1997) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edeline Wentrup-Byrne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GrØndahl, L., Cardona, F., Chiem, K. et al. Calcium phosphate nucleation on surface-modified PTFE membranes. Journal of Materials Science: Materials in Medicine 14, 503–510 (2003). https://doi.org/10.1023/A:1023403929496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023403929496

Keywords

Navigation