Skip to main content
Log in

Molecular Dynamics Simulations of Li xMn2O4 Spinel Solid Solutions with Simple Potential Models

  • Published:
Inorganic Materials Aims and scope

Abstract

Molecular dynamics simulations of Li x Mn2O4 (0 < x ≤ 1) spinel solid solutions were carried out with the use of simple pair potentials available in the literature. The results demonstrate that computer simulations using the existing potentials with an exponential repulsion term fail to adequately reproduce appreciable Li+ mobility in a stable (near-zero mobility of the manganese and oxygen ions) crystalline phase. Lennard-Jones potentials make it possible to simulate such a phase at high temperatures (on the order of 1000 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Thackeray, M.M., Manganese Oxides for Lithium Batteries, Prog. Solid State Chem., 1997, vol. 25, no. 1/2, pp. 1-71.

    Google Scholar 

  2. Darling, R. and Newman, J., Dynamic Monte Carlo Simulations of Diffusion in LiyMn2O4, J. Electrochem. Soc., 1999, vol. 146, no. 10, pp. 3765-3772.

    Google Scholar 

  3. Liquan Chen and Schoonman, J., Polycrystalline, Glassy, and Thin Films of LiMn2O4, Solid State Ionics, 1993, vol. 67, no. 1/2, pp. 17-23.

    Google Scholar 

  4. Liquan Chen, Xuejie Huang, Kolder, E., and Schoonman,??J., Diffusion Enhancement in LixMn2O4, Solid State Ionics, 1995, vol. 76, no. 1/2, pp. 91-96.

    Google Scholar 

  5. Molenda, J. and Kucza, W., Transport Properties of LixMn2O4, Solid State Ionics, 1999, vol. 117, no. 1/2, pp.?41-46.

    Google Scholar 

  6. Cygan, R.T., Westrich, H.R., and Doughty, D.H., Ionic Modeling of Lithium Manganese Spinel Materials for Use in Rechargeable Batteries, Mater. Res. Soc. Symp. Proc., 1995, vol. 393, pp. 113-118.

    Google Scholar 

  7. Ammundsen, B., Rozi ère, J., and Saiful Islam, M., Atomistic Simulation Studies of Lithium and Proton Insertion in Spinel Lithium Manganates, J. Phys. Chem., 1997, vol. 101, no. 41, pp. 8156-8163.

    Google Scholar 

  8. Gale, J.D., A Computer Program for the Symmetry-Adapted Simulation of Solids, J. Chem. Soc., Faraday Trans., 1997, vol. 93, no. 4, pp. 629-637.

    Google Scholar 

  9. Lewis, G.V. and Catlow, C.R.A., Potential Models for Ionic Oxides, J. Phys. C: Solid State Phys., 1985, vol.?18, no. 6, pp. 1149-1161.

    Google Scholar 

  10. Sung-Woo Kim and Su-Il Pyun, Thermodynamic and Kinetic Approaches to Lithium Intercalation into a Li1???Mn2O4 Electrode Using Monte Carlo Simulation, Electrochim. Acta, 2001, vol. 46, no. 7, pp. 987-997.

    Google Scholar 

  11. Liu, W., Kowal, K., and Farrington, G.C., Mechanism of the Electrochemical Insertion of Lithium into LiMn2O4 Spinels, J. Electrochem. Soc., 1998, vol. 145, no. 2, pp.459-465.

    Google Scholar 

  12. Cygan, R.T., Westrich, H.R., and Doughty, D.H., Molecular Dynamics Study of Lithium Diffusion in Lithium- Manganese Spinel Cathode Materials, Mater. Res. Soc. Symp. Proc., 1998, vol. 496, pp. 109-114.

    Google Scholar 

  13. Ken Suzuki, Yasunori Onumi, Seiichi Takami, et al., Structural Properties of LixMn2O4 as Investigated by Molecular Dynamics and Density Functional Theory, Jpn. J. Appl. Phys., Part 1, 2000, vol. 39, no. 7B, pp.?4318-4322.

    Google Scholar 

  14. Gotlib, I.Yu., Murin, I.V., Piotrovskaya, E.M., and Brodskaya, E.N., Molecular Dynamics Simulations of PbF2 and BaF2 over a Wide Temperature Range, Vestn. St.-Peterburg Univ., Ser. 4: Fiz. Khim., 2000, issue 2, no. 12, pp. 62-80.

    Google Scholar 

  15. Gotlib, I.Yu., Murin, I.V., Piotrovskaya, E.M., and Brodskaya, E.N., Molecular Dynamics Simulations of Ba1 ??x GdxF2 + x Solid Solutions over a Wide Temperature Range: I. Thermodynamic and Transport Properties, Neorg. Mater., 2001, vol. 37, no. 9, pp. 1144-1148 [Inorg. Mater. (Engl. Transl.), vol. 37, no. 9, pp. 975-978].

    Google Scholar 

  16. Gotlib, I.Yu., Murin, I.V., Piotrovskaya, E.M., and Brodskaya, E.N., Molecular Dynamics Simulations of Ba1 - x GdxF2 + x Solid Solutions over a Wide Temperature Range: II. Structural Characteristics and Fluoride Ion Diffusion, Neorg. Mater., 2003, vol. 39, no. 3, pp. 358-367 [Inorg. Mater. (Engl. Transl.), vol. 39, no. 3, pp. 291-298].

    Google Scholar 

  17. Mosbah, A., Verbaere, A., and Tournoux, M., Phases LixMnO2 ??rattachées au type spinelle, Mater. Res. Bull., 1983, vol. 18, no. 11, pp. 1375-1381.

    Google Scholar 

  18. Thackeray, M.M., Johnson, P.J., de Picciotto, L.A., et al., Electrochemical Extraction of Lithium from LiMn2O4, Mater. Res. Bull., 1984, vol. 19, no. 2, pp. 179-187.

    Google Scholar 

  19. Kucza, W., Ionic Description of Intercalation in LixMn2O4 System, Solid State Ionics, 1999, vol. 124, no.1/2, pp. 125-131.

    Google Scholar 

  20. Guyomard, D. and Tarascon, J.M., Li Metal-Free Rechargeable LiMn2O4/Carbon Cells: Their Understanding and Optimization, J. Electrochem. Soc., 1992, vol. 139, no. 4, pp. 937-948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotlib, I.Y., Murin, I.V. & Piotrovskaya, E.M. Molecular Dynamics Simulations of Li xMn2O4 Spinel Solid Solutions with Simple Potential Models. Inorganic Materials 39, 404–408 (2003). https://doi.org/10.1023/A:1023240118771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023240118771

Keywords

Navigation