Skip to main content
Log in

Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Root growth response of 10-days-oldseedlings of 100 maize accessions at, 0 mM, 60 mM, 80 mM and 150 mM NaCl concentration was assessed in solution culture. The non-linear least square method was used to quantify the salt tolerance of maize accessions. The estimated salinity threshold, Ct, the NaCl concentration at which root growth starts to decrease, C0, and C50, the concentrations at which roots stop growing and 50% of its control value revealed considerable differences between the accessions. No general consistency for tolerance was, however, found between the estimates of Ct and C50. Different genetic systems appeared to be involved in controlling the inheritance of Ct and C50.Both Ct and C50 appeared to quantify accession tolerance, and the expression of root growth as a function of NaCl concentrations provides a useful guideline for salt tolerance. Estimates of broad sense heritability for relative root length were moderate in size (0.62 to 0.82), suggesting the scope for enhancing salt tolerance in maize through selection and breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Khatib, M., T. McNeilly & J.C. Collins, 1994. Between and within cultivar variability in salt tolerance in lucerne, (Medicago sativa L.). Gen Resour & Crop Evol 41: 159-164.

    Article  Google Scholar 

  • Ashraf, M. & T. McNeilly, 1989. Effect of salinity on some cultivars of maize. Maydica 34: 179-189.

    Google Scholar 

  • Ashraf, M. & T. McNeilly, 1990. Improvement of salt tolerance in maize by selection and breeding. Plant Breeding 104: 101-107.

    Article  Google Scholar 

  • Ashraf, M., T. McNeilly & A.D. Bradshaw, 1986. The potential for evolution of salt tolerance in seven grass species. New Phytol 103: 299-309.

    Article  CAS  Google Scholar 

  • Ashraf, M., T. McNeilly & A.D. Bradshaw, 1987. Selection and heritability of tolerance to sodium chloride in four forage species. Crop Sci 27: 232-243.

    Article  CAS  Google Scholar 

  • Azhar, F.M. & T. McNeilly, 1987. Variability for salt tolerance in Sorghum bicolor (L.) Moench under hydroponic conditions. J Agron & Crop Sci 159: 269-277.

    Google Scholar 

  • Bradshaw, A.D. & K. Hardwick, 1989. Evolution and stress-genotypic and phenotypic components. Biolo J Linn Soci 37: 137-155.

    Article  Google Scholar 

  • Cramer, G.R., E. Epstien & A. Läuchli, 1988. Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium concentration. J Exp Bot 39: 1513-1522.

    CAS  Google Scholar 

  • Epstein, E. & D.W. Rains, 1987. Advances in salt tolerance. Plant & Soil 99: 17-29.

    Article  CAS  Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. Chapman and Hall, London.

    Google Scholar 

  • Flowers, T.J., A. Garcia, M. Koyama & A.R. Yeo, 1997. Breeding for salt tolerance in crop plants-the role of molecular biology. Acta Physiologiae Plantarum 19: 427-433.

    CAS  Google Scholar 

  • Flowers, T.J. & A.R. Yeo, 1995. Breeding for salinity resistance in crop plants: where next. Aust J Plant Physiol 22: 875-884.

    Article  Google Scholar 

  • Foolad, M.R., 1996. Response to selection for tolerance during germination in tomato seed derived from P1-174263. J Amer Soc Hort Sci 121: 1006-1011.

    Google Scholar 

  • Hassnian, A.M. & M. Azab. 1993. Salt tolerance of grain sorghum. In: H. Lieth & A. Al-Masoom (Eds.), Towards the Rational Use of High Salinity Tolerant Plants, pp. 153-156. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Hewitt, E.J., 1966. Sand and water culture methods used in the study of plant nutrition. Commonwealth Agriculture Bureaux. Technical Communication No. 22.

  • Kebebew, F. & T. McNeilly, 1995. Variation in response of accessions of minor millets, Pennisetum americanum (L.) Leeke (Pearl Millet) and Eleusine coracana (L.) gaertn (Finger Millet), and Eragrostis tef (Zucc.) trotter (Tef), to salinity in early seedling growth. Plant & Soil 175: 311-321.

    Article  CAS  Google Scholar 

  • Khan, A.A., 1999. Breeding Maize for Stress Tolerance. PhD Thesis. The University of Liverpool, UK.

    Google Scholar 

  • Khan, A.A., T. McNeilly and F.M. Azhar, 2001. Stress tolerance in crop plants. (Review). Int J Agri Biol 3: 250-55.

    Google Scholar 

  • Maas, E.V. & G.J. Hoffman, 1977. Crop salt tolerance current assessment. J Irrig & Drain Div ASCE 103: 115-134.

    Google Scholar 

  • Maas, E.V., G.J. Hoffman, G.D. Chaba, J.A. Poss & M.C. Shannon, 1983. Salt sensitivity of corn at various growth stages. Irrig Sci 4: 45-57.

    Article  Google Scholar 

  • Maiti, R.K., L.E.D. Amaya, S.I. Cardona, A.M.O. Dimas, M. De La Rosa-Ibarra & H.D.L. Castillo, 1996. Genotypic variability in maize cultivars (Zea mays L.) for resistance to drought and salinity. J Plant Physiol 148: 741-744.

    CAS  Google Scholar 

  • Martinez-Cob, A., R. Aragues & A. Royo, 1987. Salt tolerance of barley (Hordeum vulgare L.) cultivars at the germination stage: Analysis of response functions. Plant & Soil 104: 53-56.

    Article  CAS  Google Scholar 

  • Meigs, P. 1968. Deserts of the world. In: W.G. McGinnies, B.J. Goldman & P. Paylore (Eds.), An Appraisal of Research into Their Physical and Biological Environments. Uni. Arizona Press, Tucson. USA.

    Google Scholar 

  • Paterniani, E., 1990. Maize breeding in tropics. Cri Rev Plant Sci 9: 125-154.

    Article  Google Scholar 

  • Rao, S.A., 1997. The Potential for Breeding Zea mays L. for Saline Conditions. Ph.D. Thesis, The University of Liverpool.

  • Rao, S.A. & T. McNeilly, 1999. Genetic basis of variation for salinity tolerance in maize (Zea mays L.). Euphytica 108: 145-150.

    Article  Google Scholar 

  • Shannon, M.C., 1985. Principles and strategies in breeding for salt tolerance. Plant & Soil 89: 227-241.

    Article  Google Scholar 

  • Saranga, Y., A. Cahaner, D. Zamir, A. Marani, A. & J. Rudich, 1992. Breeding tomatoes for salt tolerance: inheritance of salt tolerance and related traits in inter-specific populations. Theor Appl Genet 84: 90-396.

    Article  Google Scholar 

  • SPSS, 1994. Repeated Measure Analysis of Variance, pp. 107-143. In: SPSS Advance Statistics. Release 6.1.

  • Steppuhn, H., K. Wall, V. Rasiah & Y.M. Jame, 1996. Response functions for grain yield from spring-sown wheats grown in saline rooting media. Canad Agric Engin 38: 249-256.

    Google Scholar 

  • van Genuchten, M.T., 1983. Analysis crop salt tolerance data: Model description and user manual USDA-ARS, ASSL, Riverside California. Research Report 120: 1-50.

    Google Scholar 

  • van Genuchten, M.T. & G.J. Hoffman, 1984. Analysis of crop salt tolerance data. In: I. Shainberg & J. Shalevet (Eds.), Soil Salinity under Irrigation, pp. 258-271. Springer Verlag, Berlin.

    Google Scholar 

  • Wallace, H.A. & E.N. Bressman, 1949. Corn and Corn Growing. John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.A., Rao, S.A. & McNeilly, T. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica 131, 81–89 (2003). https://doi.org/10.1023/A:1023054706489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023054706489

Navigation