Skip to main content
Log in

A comparative structural and functional analysis of cyanobacterial plastocyanin and cytochrome c 6 as alternative electron donors to Photosystem I

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Plastocyanin and cytochrome c 6 are two soluble metalloproteins that act as alternative electron carriers between the membrane-embedded complexes cytochromes b 6 f and Photosystem I. Despite plastocyanin and cytochrome c 6 differing in the nature of their redox center (one is a copper protein, the other is a heme protein) and folding pattern (one is a β-barrel, the other consists of α-helices), they are exchangeable in green algae and cyanobacteria. In fact, the two proteins share a number of structural similarities that allow them to interact with the same membrane complexes in a similar way. The kinetic and thermodynamic analysis of Photosystem I reduction by plastocyanin and cytochrome c 6 reveals that the same factors govern the reaction mechanism within the same organism, but differ from one another. In cyanobacteria, in particular, the electrostatic and hydrophobic interactions between Photosystem I and its electron donors have been analyzed using the wild-type protein species and site-directed mutants. A number of residues similarly conserved in the two proteins have been shown to be critical for the electron transfer reaction. Cytochrome c 6 does contain two functional areas that are equivalent to those previously described in plastocyanin: one is a hydrophobic patch for electron transfer (site 1), and the other is an electrically charged area for complex formation (site 2). Each cyanobacterial protein contains just one arginyl residue, similarly located between sites 1 and 2, that is essential for the redox interaction with Photosystem I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babu CR, Volkman BF and Bullerjahn GS (1999) NMR solution structure of plastocyanin from the photosynthetic prokaryote Prochlorothrix hollandica. Biochemistry 38: 4988–4995

    Article  PubMed  CAS  Google Scholar 

  • Badsberg U, Jorgensen AM, Gesmar H, Led JJ, Hammerstad JM, Jespersen LL and Ulstrup J (1996) Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis. Biochemistry 35: 7021–7031

    Article  PubMed  CAS  Google Scholar 

  • Beissinger M, Sticht H, Sutter M, Ejchart A, Haehnel W and Rosch P (1998) Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. EMBO J 17: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Bendall DS (1996) Interprotein electron transfer. In: Bendall DS (ed) Protein electron transfer, pp 43–68. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Bogan AA and Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Bottin H and Mathis P (1985) Interaction of plastocyanin with the Photosystem I reaction center: a kinetic study by flash absorption spectroscopy. Biochemistry 24: 6453–6460

    Article  CAS  Google Scholar 

  • Bovy A, de Vrieze G, Borrias M and Weisbeek P (1992) Transcriptional regulation of the plastocyanin and cytochrome c553genes from the cyanobacterium Anabaena species PCC 7937. Mol Microbiol 6: 1507–1513

    PubMed  CAS  Google Scholar 

  • Chitnis PR, Purvis D and Nelson N (1991) Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit III of Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266: 20146–20151

    PubMed  CAS  Google Scholar 

  • Crowley PB, Otting G, Schlarb-Ridley BG, Canters GW and Ubbink M (2001) Hydrophobic interactions in a cyanobacterial plastocyanin-cytochrome f complex. J Am Chem Soc 123: 10444–10453

    Article  PubMed  CAS  Google Scholar 

  • De la Cerda B, Navarro JA, Hervás M and De la Rosa MA (1997) Changes in the reaction mechanism of electron transfer from plastocyanin to Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 as induced by site-directed mutagenesis of the copper protein. Biochemistry 36: 10125–10130

    Article  PubMed  CAS  Google Scholar 

  • De la Cerda B, Díaz-Quintana A, Navarro JA, Hervás M and De la Rosa MA (1999) Site-directed mutagenesis of cytochrome c6from Synechocystis sp. PCC 6803. The heme-protein possesses a negatively charged area that may be isofunctional with the acidic patch of plastocyanin. J Biol Chem 274: 13292–13297

    Article  PubMed  CAS  Google Scholar 

  • De la Rosa MA, Navarro JA, Díaz-Quintana A, De la Cerda B, Molina-Heredia FP, Balme A, Murdoch PS, Díaz-Moreno I, Durán RV and Hervás M (2002) An evolutionary analysis of the reaction mechanisms of Photosystem I reduction by cytochrome c6 and plastocyanin. Bioelectrochem 55: 41–45

    Article  CAS  Google Scholar 

  • Díaz-Quintana A, De la Cerda B, Hervás M, Navarro JA and De la Rosa MA (2002) Mutations in both leucine 12 and lysine 33in plastocyanin from Synechocystis sp. PCC 6803 induce drastic changes in the hydrophobic interactions with Photosystem I. Photosynth Res 72: 223–230

    Article  PubMed  Google Scholar 

  • Drepper F, Hippler M, Nitschke W and Haehnel W (1996) Binding dynamics and electron transfer between plastocyanin and Photosystem I. Biochemistry 35: 1282–1295

    Article  PubMed  CAS  Google Scholar 

  • Ejdebäck M, Bergkvist A, Karlsson G and Ubbink M (2000) Sidechain interactions in the plastocyanin-cytochrome f complex. Biochemistry 39: 5022–5027

    Article  PubMed  CAS  Google Scholar 

  • Frazão C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hervás M, Navarro JA, De la Rosa MA and Sheldrick G (1995) Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. Structure 3: 1159–1169

    Article  PubMed  Google Scholar 

  • Fromme P, Jordan P and Krauss N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, He Z and Luan S (2002) Functional relationship of cytochrome c6 and plastocyanin in Arabidopsis. Nature 417: 567–571

    Article  PubMed  CAS  Google Scholar 

  • Haehnel W, Hesse V and Präpper A (1980) Electron transfer from plastocyanin to P700. Function of a subunit of Photosystem I reaction center. FEBS Lett 111: 79–82

    Article  CAS  Google Scholar 

  • Haehnel W, Jansen T, Gause K, Kläsgen RB, Stahl B, Mich, D, Huvermann B, Karas M and Herrmann RG (1994) Electron transfer from plastocyanin to Photosystem I. EMBO J 13: 1028–1038

    PubMed  CAS  Google Scholar 

  • Hervás M, De la Rosa MA and Tollin G (1992) A comparative laser flash photolysis study of algal plastocyanin and cytochrome c552 photooxidation by Photosystem I particles. Eur J Biochem 203: 115–120

    Article  PubMed  Google Scholar 

  • Hervás M, Ortega JM, Navarro JA, De la Rosa MA and Bottin H (1994) Laser flash kinetic analysis of Synechocystis PCC 6803cytochrome c6 and plastocyanin oxidation by PS I. Biochim Biophys Acta 1184: 235–241

    Article  Google Scholar 

  • Hervás M, Navarro JA, Díaz A, Bottin H and De la Rosa MA (1995) Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c6 to PS I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry 34: 11321–11326

    Article  PubMed  Google Scholar 

  • Hervás M, Navarro JA, Díaz A and De la Rosa MA (1996) A comparative thermodynamic analysis by laser-flash absorption spectroscopy of plastocyanin and cytochrome c6 oxidation by Photosystem I in Anabaena PCC 7119, Synechocystis PCC 6803and spinach. Biochemistry 35: 2693–2698

    Article  PubMed  Google Scholar 

  • Hervás M, Navarro JA, Molina-Heredia FP and De la Rosa MA (1998) The reaction mechanism of Photosystem I reduction by plastocyanin and cytochrome c6 follows two different kinetic models in the cyanobacterium Pseudanabaena sp. PCC 6903. Photosynth Res 57: 93–100

    Article  Google Scholar 

  • Hippler M, Reichert J, Sutter M, Zak E, Altschmied L, Schröer U, Herrmann RG and Haehnel W (1996) The plastocyanin binding domain of Photosystem I. EMBO J 15: 6374–6384

    PubMed  CAS  Google Scholar 

  • Hippler M, Drepper F, Farah J and Rochaix JD (1997) Fast electron transfer from cytochrome c6 and plastocyanin to Photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36: 6343–6349

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Drepper F, Rochaix JD and Mühlenhoff U (1999) Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into Photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. J Biol Chem 274: 4180–4188

    Article  PubMed  CAS  Google Scholar 

  • Hiyama T and Ke B (1972) Difference spectra and extinction coefficient of P700. Biochim Biophys Acta 267: 160–171

    Article  PubMed  CAS  Google Scholar 

  • Hope AB (2000) Electron transfer amongst cytochrome f, plastocyanin and Photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456: 5–26

    Article  PubMed  CAS  Google Scholar 

  • Illerhaus J, Altschmied L, Reichert, Zak E, Herrmann G and Haehnel W (2000) Dynamic interaction of plastocyanin with the cytochrome bf complex. J Biol Chem 275: 17590–17595

    Article  PubMed  CAS  Google Scholar 

  • Janin J (2000) Kinetics and thermodynamics of protein–protein interactions. In: Kleanthous C (ed) Protein-Protein Recognition, pp 1–32, Frontiers in Molecular Biology series. Oxford University Press, New York

    Google Scholar 

  • Jelesarov I and Bosshard HR (1994) Thermodynamics of ferredoxin binding to ferredoxin:NADP+ reductase and the role of water at the complex interface. Biochemistry 33: 13321–13328

    Article  PubMed  CAS  Google Scholar 

  • Kannt A, Young S and Bendall DS (1996) The role of acidic residues of plastocyanin in its interaction with cytochrome f. Biochim Biophys Acta 1277: 115–126

    Article  CAS  Google Scholar 

  • Kerfeld CA, Anwar HP, Interrante R, Merchant S and Yeates TO (1995) The structure of chloroplast cytochrome c6 at 1.9 Å resolution: evidence for functional oligomerization. JMol Biol 250: 627–647

    Article  CAS  Google Scholar 

  • Lo Conte L, Chotia C and Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285: 2177–2198

    Article  PubMed  CAS  Google Scholar 

  • Marcus RA and Suttin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811: 265–322

    CAS  Google Scholar 

  • Mathis P and Sétif P (1981) Near infra-red absorption spectra of the chlorophyll a cations and triplet state in vitro and in vivo. Isr J Chem 21: 316–320

    CAS  Google Scholar 

  • Matthijs HCP, van der Staay GWM and Mur LR (1994) Prochlorophytes: the 'other' cyanobacteria? In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 49–64. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Merchant S, Hill K and Howe G (1991) Dynamic interplay between two copper-titrating components in the transcriptional regulation of cytochrome c6. EMBO J 10: 1383–1389

    PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Dìaz-Quintana A, Hervás M, Navarro JA and De la Rosa MA (1999) Site-directed mutagenesis of cytochrome c6 from Anabaena species PCC 7119. Identification of surface residues of the hemeprotein involved in Photosystem I reduction. J Biol Chem 274: 33565–33570

    Article  PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Hervás M, Navarro JA and De la Rosa MA (2001) A single arginyl residue in plastocyanin and cytochrome c6 from the cyanobacterium Anabaena sp. PCC 7119 is required for efficient reduction of Photosystem I. J Biol Chem 276: 601–605

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Yamagishi M, Yoshizaki F and Sugimura Y (1992) The syntheses of plastocyanin and cytochrome c-553 are regulated by copper at the pre-translational level in a green alga, Pediastrum boryanum. J Biochem (Tokyo) 111: 219–224

    CAS  Google Scholar 

  • Navarro JA, Hervás M and De la Rosa MA (1997) Co-evolution of cytochrome c6 and plastocyanin, mobile proteins transferring electrons from cytochrome b6-f to Photosystem I. J Biol Inorg Chem 2: 11–22

    Article  CAS  Google Scholar 

  • Navarro JA, Hervás M, Babu CR, Molina-Heredia FP, Bullerjahn GS and De la Rosa MA (1999) Kinetic mechanisms of PS I reduction by plastocyanin and cytochrome c6 in the ancient cyanobacteria Pseudanabaena sp. PCC 6903 and Prochlorothrix hollandica. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol III, pp 1605–1608. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Navarro JA, Hervás M, Sun J, De la Cerda B, Chitnis PR and De la Rosa MA (2001a) Negatively charged residues in the H loop of PsaB subunit in Photosystem I from Synechocystis sp. PCC 6803 appear to be responsible for electrostatic repulsions with plastocyanin. Photosynth Res 65: 63–68

    Article  Google Scholar 

  • Navarro JA, Myshkin E, De la Rosa MA, Bullerjahn GS and Hervás M (2001b) The unique proline of the Prochlorothrix hollandica plastocyanin hydrophobic patch impairs electron transfer to Photosystem I. J Biol Chem 276: 37501–37505

    Article  PubMed  CAS  Google Scholar 

  • Nordling M, Sigfridsson K, Young S, Lundberg LN and Hansson Ö (1991) Flash-photolysis studies of the electron transfer from genetically modified spinach plastocyanin to Photosystem I. FEBS Lett 291: 327–330

    Article  PubMed  CAS  Google Scholar 

  • Olesen K, Ejdebäck M, Crnogorac MM, Kostic NM and Hansson Ö (1999) Electron transfer to photosystem 1 from spinach plastocyanin mutated in the small acidic patch: ionic strength dependence of kinetics and comparison of mechanistic models. Biochemistry 38: 16695–705

    Article  PubMed  CAS  Google Scholar 

  • Sawaya MR, Krogmann DW, Serag A, Ho KK, Yeates TO and Kerfeld CA (2001) Structures of cytochrome c549 and cytochrome c6 from the cyanobacterium Arthrospira maxima. Biochemistry 40: 9215–9225

    Article  PubMed  CAS  Google Scholar 

  • Schnackenberg J, Than ME, Mann K, Wiegand G, Huber R and Reuter W( 1999) Amino acid sequence, crystallization and structure determination of reduced and oxidized cytochrome c6 from the green alga Scenedesmus obliquus. J Mol Biol 290: 1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Segal MG and Sykes AG (1978) Kinetic studies on 1:1 electron transfer reactions involving blue copper proteins. 1. Evidence of an unreactive form of the reduced protein (pH<5) and for protein complex association in reactions of parsley (and spinach) plastocyanin. J Am Chem Soc 100: 4585–4592

  • Sheinerman FB, Norel R and Honig B (2000) Electrostatic aspects of protein–protein interactions. Curr Opin Struct Biol 10: 153– 159

    Article  PubMed  CAS  Google Scholar 

  • Sigfridsson K (1998) Plastocyanin, an electron-transfer protein. Photosynth Res 57: 1–28

    Article  CAS  Google Scholar 

  • Sigfridsson K, Hansson Ö, Karlsson BG, Baltzer L, Nordling Mand Lundberg LG (1995) Spectroscopic and kinetic characterization of the spinach plastocyanin mutant Tyr83-His: a histidine residue with a high pKa value. Biochim Biophys Acta 1228: 28–36

    Article  Google Scholar 

  • Sigfridsson K, Young S and Hansson Ö (1996) Structural dynamics in the plastocyanin-Photosystem I electron-transfer complex as revealed by mutant studies. Biochemistry 35: 1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Simondsen RP, Weber PC, Salemne FR and Tollin G (1982) Transient kinetics of electron transfer reactions of flavodoxin: ionic strength dependence of semiquinone oxidation by cytochrome c, ferrricyanide and ferric ethylenediaminetetraacetic acid andcomputer modeling of reaction complexes. Biochemistry 24: 6366–6375

    Article  Google Scholar 

  • Sommer F, Drepper F and Hippler M (2002) The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c6 and fast electron transfer to Photosystem I in Chlamydomonas reinhardtii. J Biol Chem 277: 6573–6581

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Xu W, Hervás M, Navarro JA, De la Rosa MA and Chitnis PR (1999) Oxidising side of the cyanobacterial Photosystem I. Evidence for interaction between the electron donor proteins and a luminal surface helix of the PsaB subunit. J Biol Chem 274: 19048–19054

    Article  PubMed  CAS  Google Scholar 

  • Takabe T, Ishikawa H, Niwa S and Itoh S (1983) Electron transfer between plastocyanin and P700 in highly-purified Photosystem I center complex. Effect of pH, cations and subunit peptide composition. J Biochem (Tokyo) 94: 1901–1911

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    PubMed  CAS  Google Scholar 

  • Tollin G, Meyer T and Cusanovich MA (1986) Elucidation of the factors which determine reaction-rate constants and biological specificity for electron transfer proteins. Biochim Biophys Acta 853: 29–41

    PubMed  CAS  Google Scholar 

  • Ubbink M, Ejdebäck M, Karlsson BG and Bendall DS (1998) The structure of the complex of plastocyanin and cytochrome f determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6: 323–335

    Article  PubMed  CAS  Google Scholar 

  • Ullmann GM, Hauswald M, Jensen A, Kostic NM and Knapp EW (1997) Comparison of the physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be isofunctional with tyrosine 83 in plastocyanin. Biochemistry 36: 16187–16196

    Article  PubMed  CAS  Google Scholar 

  • Wastl J, Bendall DS and Howe CJ (2002) Higher plants contain a modified cytochrome c6. Trends Plant Sci 7: 244–245

    Article  PubMed  CAS  Google Scholar 

  • Watkins JA, Cusanovich MA, Meyer TE and Tollin G (1994) A 'parallel plate' electrostatic model of bimolecular rate constants applied to electron transfer proteins. Protein Sci 3: 2104–2114

    Article  PubMed  CAS  Google Scholar 

  • Wood PM (1974) Rate of electron transfer between plastocyanin, cytochrome f, related proteins and artificial redox reagents in solution. Biochim Biophys Acta 537: 370–379

    Google Scholar 

  • Wood PM and Bendall DS (1975) The kinetics and specificity of electron transfer from cytochromes and copper proteins to P700. Biochim Biophys Acta 387: 115–128

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Chitnis VP, Yu L and Chitnis PR (1994) Function and organization of Photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem 269: 3205–3211

    PubMed  CAS  Google Scholar 

  • Yamada S, Park SY, Shimizu H, Koshizuka Y, Kadokura K, Satoh T, Suruga K, Ogawa M, Isogai Y, Nishio T, Shiro Y and Oku T (2000) Structure of cytochrome c6 from the red alga Porphyra yezoensis at 1.57 Å resolution. Acta Crystallogr </del>56: 1577–1582

    CAS  Google Scholar 

  • Zhang L, McSpadden B, Pakrasi HB and Whitmarsh J (1992) Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem 267: 19054–19059

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. De la Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Quintana, A., Navarro, J.A., Hervás, M. et al. A comparative structural and functional analysis of cyanobacterial plastocyanin and cytochrome c 6 as alternative electron donors to Photosystem I. Photosynthesis Research 75, 97–110 (2003). https://doi.org/10.1023/A:1022841513592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022841513592

Navigation