Skip to main content
Log in

Cytogenetic tools for Arabidopsis thaliana

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Although the first description of chromosomes of Arabidopsis dates as far back as 1907, little attention was paid to its cytogenetics for a long time. The spectacular interest in chromosome research for this species that now is the model plant species by excellence came with the introduction of molecular cytogenetical research including FISH technology, genome sequence data and immunodetection of chromatin proteins. In this paper, we present an overview of the most important cytogenetic tools that were developed for Arabidopsis in recent decades. It shows the power of meiosis for studying synaptic mutants and FISH technology, and the development of numerical and structural chromosome mutant series like trisomics, telotrisomics and translocations for assigning linkage groups to chromosomes. Its small genome and chromosome size and relatively simple organization of heterochromatin have been the key to a successful characterization of the molecular organization of repetitive and single copy sequences on the chromosomes, both in metaphase and pachytene complements, but also in interphase nuclei and extended DNA fibres. Finally, Arabidopsis is the first plant species in which a heterochromatin knob could be analysed in full detail and in which chromosome painting with BAC clones covering whole chromosome arms could be established. All these achievements are probably only the very first steps in a promising new era in plant cytogenetics and chromatin research yet to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albini SM (1994) A karyotype of the Arabidopsis thaliana genome derived from synaptonemal complex analysis at prophase I of meiosis. Plant J 5: 665‐672.

    Google Scholar 

  • Alonso‐Blanco C, Peeters AJM, Koornneef M et al. (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14: 259‐271.

    Google Scholar 

  • Altmann T, Damm B, Frommer WB et al. (1994) Easy determination of ploidy level in Arabidopsis thaliana plants by means of pollen size measurement. Plant Cell Rep 13: 652‐656.

    Google Scholar 

  • Ambros PF, Schweizer D (1976) The Giemsa C‐banded karyotype of Arabidopsis thaliana (L.) Heynh. Arabidopsis Inf Serv 13: 167‐171.

    Google Scholar 

  • Amos JA, Scholl RL (1978) Induction of haploid callus from anthers of four species of Arabidopsis. Z Pflanzenphysiol 90: 33‐43.

    Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796‐815.

    Google Scholar 

  • Armstrong SJ, Jones GH (2001) Female meiosis in wild‐type Arabidopsis thaliana and in two meiotic mutants. Sexual Plant Reprod 13: 177‐183.

    Google Scholar 

  • Bennett MD, Smith JB, Ward J, Jenkins G (1981) The relationship between nuclear DNA content and centromere volume in higher plants. J Cell Sci 47: 91‐115.

    Google Scholar 

  • Bouharmont J, Macé F (1972) Valeur competitive des plantes autotetraploides d'Arabidopsis thaliana. Can J Genet Cytol 14: 257‐263.

    Google Scholar 

  • Brandes A, Heslop‐Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997a) Comparative analysis of the chromosomal and genomic organization of Ty1‐copia‐like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33: 11‐21.

    Google Scholar 

  • Brandes A, Thompson H, Dean C, Heslop‐Harrison JS (1997b) Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res 5: 238‐246.

    Google Scholar 

  • Bronckers F (1963) Variations polliniques dans une série d'autopolyploJdes artificiels d'Arabidopsis thaliana (L.) Heynh. Pollen Spores 5: 233‐238.

    Google Scholar 

  • Bruggemann E, Handwerger K, Essex C, Storz G (1996) Analysis of fast neutron‐generated mutants at the Arabidopsis thaliana HY 4 locus. Plant J 10: 755‐760.

    Google Scholar 

  • Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241: 504‐514.

    Google Scholar 

  • Comai L, Tyagi AP, Lysak MA (2003) FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res 11: 217‐226.

    Google Scholar 

  • Copenhaver GP (2003) Using Arabidopsis to understand centromere function: progress and prospects. Chromosome Res 11: 255‐262.

    Google Scholar 

  • Copenhaver GP, Browne WE, Preuss D (1998) Assaying genome‐wide recombination and centromere functions with Arabidopsis tetrads. Proc Nat Acad Sci USA 95: 247‐252.

    Google Scholar 

  • CSHL/WUGSC/PEB Arabidopsis Sequencing Consortium (2000) The complete sequence of a heterochromatic island from a higher eukaryote. Cell 100: 377‐386.

    Google Scholar 

  • de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants–techniques and applications. Trends Plant Sci 4: 258‐263.

    Google Scholar 

  • Fransz PF, Alonso‐Blanco C, Liharska TB, Peeters AJM, Zabel P, deJong JH (1996) High‐resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9: 421‐430.

    Google Scholar 

  • Fransz P, Armstrong S, Alonso‐Blanco C, Fischer TC, Torres‐Ruiz RA, Jones G (1998a) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13: 867‐876.

    Google Scholar 

  • Fransz PF, de Jong JH, Zabel P (1998b) Preparation of extended DNA fibres for high resolution mapping by fluorescence in situ hybridization (FISH). In: Gelvin SB, Schilperoort RA, Verma DPS, eds. Plant Molecular Biology Manual G5. Dordrecht: Kluwer Academic Publishers, pp. 1‐18.

    Google Scholar 

  • Fransz PF, Armstrong S, de Jong JH et al. (2000) Integrated cytogenetic map of chromosome arm 4S of A thaliana: Structural organization of heterochromatic knob and centromere region. Cell 100: 367‐376.

    Google Scholar 

  • Fransz PF, de Jong JH, Lysak MA, Ruffini Castiglione M, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Nat Acad Sci USA 99: 14584‐14589.

    Google Scholar 

  • Furner IJ, Ainscough JFX, Pumfrey JA, Petty LM (1995) Clonal analysis of the late flowering fca mutant of Arabidopsis thaliana–cell fate and cell autonomy. Development 122: 1041‐1050.

    Google Scholar 

  • Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana.PlantPhysiol 96: 985‐989.

    Google Scholar 

  • Gresshoff PM, Doy CH (1972) Haploid Arabidopsis thaliana callus and plants from anther culture. Austr J Biol Sci. 25: 259‐264.

    Google Scholar 

  • Haupt W, Fischer TC, Winderl S, Fransz P, Torres Ruiz RA (2001) The CENTROMERE1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J 27: 285‐296.

    Google Scholar 

  • Heslop‐Harrison JS, Maluszynska J (1994) Molecular Cytogenetics of Arabidopsis. In: Meyerowitz EM, Somerville CR, eds. Arabidopsis. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, pp. 63‐85.

    Google Scholar 

  • Heslop‐Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11: 31‐42.

    Google Scholar 

  • Jackson SA, Ming L, Goodman HM, Jiang J, Ming LW, Jiang JM (1998) Application of fiber‐FISH in physical mapping of Arabidopsis thaliana. Genome 41: 566‐572.

    Google Scholar 

  • Jackson SA, Dong F, Jiang J (1999) Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant J 17: 581‐587.

    Google Scholar 

  • Kirik A, Salomon S, Puchta H (2000) Species‐specific double‐strand break repair and genome evolution in plants. EMBO J 19: 5562‐5566.

    Google Scholar 

  • Klášterská I, Ramel C (1980) Meiosis in PMCs of Arabidopsis thaliana. Arabidopsis Inf Serv 17: 1‐10.

    Google Scholar 

  • Koornneef M (1983) The use of telotrisomics for centromere mapping in Arabidopsis thaliana (L.) Heynh. Genetica 62: 33‐40.

    Google Scholar 

  • Koornneef M, van der Veen JH (1983) Trisomics in Arabidopsis thaliana and the location of linkage groups. Genetica 61:41‐46.

    Google Scholar 

  • Koornneef M, Dresselhuys HC, Sree Ramulu K (1982) The genetic identification of translocations in Arabidopsis. Arabidopsis Inf Serv 19: 93‐99.

    Google Scholar 

  • Kowalski SP, Lan TH, Feldmann KA, P aterson AH (1994) QTL mapping of naturally‐occurring variation in flowering time of Arabidopsis thaliana. Mol Gen Genet 245: 548‐555.

    Google Scholar 

  • Laibach F (1907) Zur Frage nach der IndividualitMt der Chromosomen im Pflanzenreich. Beih Botan Zentralbl 22: 191‐210.

    Google Scholar 

  • Laufs P, Autran D, Traas J (1999) A chromosomal paracentric inversion associated with T‐DNA integration in Arabidopsis. Plant J 18: 131‐139.

    Google Scholar 

  • Lee‐Chen S, Steinitz‐Sears LM (1967) The location of linkage groups in Arabidopsis thaliana. Can J Genet Cytol 9: 381‐384.

    Google Scholar 

  • Li X, Song Y, Century KS et al. (2001) A fast neutron deletion mutagenesis‐based reverse genetics systems for plants. Plant J 27: 235‐242.

    Google Scholar 

  • Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28: 689‐697.

    Google Scholar 

  • Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res 11: 195‐204.

    Google Scholar 

  • Maluszynska J, Heslop‐Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1: 159‐166.

    Google Scholar 

  • Maluszynska J, Heslop‐Harrison JS (1993) Molecular cytogenetics of the genus Arabidopsis: in situ localization of rDNA sites, chromosome numbers and diversity in centromeric heterochromatin. Annals Bot 71:479‐484.

    Google Scholar 

  • McKelvie AD (1965) Preliminary data on linkage groups in Arabidopsis. In: Röbbelen G, ed. Arabidopsis Research. Gelsenkirchen: Wasmund, pp. 79‐84.

    Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: A Model Plant for Genome Analysis. Science 282: 662‐682.

    Google Scholar 

  • Morris PC, Altmann T (1994) Tissue culture and transformation. In: Meyerowitz EM, Somerville CR, eds. Arabidopsis. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, pp. 173‐222.

    Google Scholar 

  • Murata M, Motoyoshi F (1995) Floral chromosomes of Arabidopsis thaliana for detecting low‐copy DNA sequences by fluorescence in situ hybridization. Chromosoma 104: 39‐43.

    Google Scholar 

  • Murata M, Heslop‐Harrison JS, Motoyoshi F (1997) Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi‐color fluorescence in situ hybridization with cosmid clones. Plant J 12: 31‐37.

    Google Scholar 

  • Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D (1998) Major chromosomal rearrangements induced by T‐DNA transformation in Arabidopsis. Genetics 149: 641‐650.

    Google Scholar 

  • Negruk V, Eisner G, Lemieux B (1996) Addition‐deletion mutations in transgenic Arabidopsis thaliana generated by the seeds co‐cultivation method. Genome 39: 1117‐1122.

    Google Scholar 

  • Negrutiu I, Jacobs M, Cachita D (1978) Some factors controlling in vitro morphogenesis of Arabidopsis thaliana. Z Pflanzenphysiol 86: 113‐124.

    Google Scholar 

  • Noël L, Moores TL, van der Biezen EA et al. (1999) Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11: 2099‐2111.

    Google Scholar 

  • Rédei GP (1964) Crossing experiences with polyploids. Arabidopsis Inf Serv 1: 13.

    Google Scholar 

  • Rédei GP (1965) Business session. In: Röbbelen G, ed. Arabidopsis Research Gelsenkirchen: Wasmund, pp. 207‐210.

    Google Scholar 

  • Rédei GP (1970) Arabidopsis thaliana (L.) Heynh.–A review of the genetics and biology. Bibliographia Genet 20: 20‐27.

    Google Scholar 

  • Röbbelen G, Kribben FJ (1966) Erfahrungen bei der Auslese von Trisomen. Arabidopsis Inf Serv 3: 16‐17.

    Google Scholar 

  • Ross K, Fransz PF, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4: 507‐516.

    Google Scholar 

  • Samoylova TI, Meister A, Misera S (1996) The flow karyotype of Arabidopsis thaliana interphase chromosomes. Plant J 10: 949‐954.

    Google Scholar 

  • Sanchez‐Moran E, Armstrong SJ, Santos JL, Franklin FCH, Jones GH (2001) Chiasma formation in Arabidopsis thaliana accession Wassilewskija and in two meiotic mutants. Chromosome Res 9: 121‐128.

    Google Scholar 

  • Sanchez‐Moran E, Armstrong SJ, Santos JL, F ranklin FCH, Jones GH (2002) Variation in chiasma frequency among eight accessions of Arabidopsis thaliana. Genetics 162: 1415‐1422.

    Google Scholar 

  • Schubert I, Fransz PF, F uchs J, de Jong JH (2001) Chromosome painting in plants. Meth Cell Sci 23: 57‐69.

    Google Scholar 

  • Schwarzacher T, Heslop‐Harrison JS (1991) In s itu hybridization to plant telomeres using synthetic oligomers. Genome 34: 317‐323.

    Google Scholar 

  • Schweizer D, Ambros PF, Gründler P, Varga F (1987) Attempts to relate cytological and molecular chromosome data of Arabidopsis thaliana to its genetic linkage map. Arabidopsis Inf Serv 25: 27‐34.

    Google Scholar 

  • Sears LMS, Lee‐Chen S (1970) Cytogenetic studies in Arabidopsis thaliana. Can J Genet Cytol 12: 217‐223.

    Google Scholar 

  • Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4: 3 3 3‐347.

    Google Scholar 

  • Silverstone RA, Ciampaglio CN, Sun T‐P (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10: 155‐169.

    Google Scholar 

  • Sree Ramulu K, Sybenga J (1979) Comparison of fast neutrons and X‐rays in respect to genetic effects accompanying induced chromosome aberrations and analysis of translocations in Arabidopsis thaliana. Arabidopsis Inf Serv 16: 27‐34.

    Google Scholar 

  • Sree Ramulu K, Sybenga J (1985) Genetic background damage accompanying reciprocal translocations induced by X‐rays and fission neutrons in Arabidopsis and Secale. Mutation Res 149: 421‐430.

    Google Scholar 

  • Steinitz‐Sears LM (1963) Chromosome studies in Arabidopsis thaliana. Genetics 48: 483‐490.

    Google Scholar 

  • Sun T‐P, Goodman HM, Ausubel FM (1992) Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4: 119‐128.

    Google Scholar 

  • Tabata S, Kaneko T, Nakamura Y et al. (2000) Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408: 823‐826.

    Google Scholar 

  • Tax FE, Vernon DM (2001) T‐DNA‐associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol 126: 1527‐1538.

    Google Scholar 

  • Thompson H, Schmidt R, Brandes A, Heslop‐Harrison JS, Dean C (1996) A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet 253: 247‐252.

    Google Scholar 

  • Timpte C, Wilson AK, Estelle M(1994) The axr2‐1 mutation of Arabidopsis thaliana is a gain‐of‐function mutation that disrupts an early step in auxin response. Genetics 138: 1239‐1249.

    Google Scholar 

  • Vergunst AC, Jansen LET, Fransz PF, de Jong JH, Hooykaas PJJ (2000) Cre/lox‐mediated recombination in Arabidopsis: Evidence for transmission of a translocation and a deletion event. Chromosoma 109: 287‐297.

    Google Scholar 

  • Vizir I, Korol AB (1990) Sex difference in recombination frequency in Arabidopsis. Heredity 65: 379‐383.

    Google Scholar 

  • Vizir I, Mulligan BJ (1999) Genetics of gamma—irradiation‐induced mutations in Arabidopsis thaliana: large chromosomal deletions can be rescued through the fertilization of diploid eggs. J Hered 90: 412‐417.

    Google Scholar 

  • Vizir I, Anderson ML, Wilson ZA, Mulligan BJ (1994) Isolation of deficiencies in the Arabidopsis genome by gamma‐Irradiation of pollen. Genetics 137: 1111‐1119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans de Jong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koornneef, M., Fransz, P. & de Jong, H. Cytogenetic tools for Arabidopsis thaliana . Chromosome Res 11, 183–194 (2003). https://doi.org/10.1023/A:1022827624082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022827624082

Navigation