Skip to main content
Log in

Monitoring the in Vivo Delivery of Proteins from Carbomer Hydrogels by X-Ray Fluorescence

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To measure the effect of protein size on their disappearance from subcutaneously implanted carbomer hydrogel matrices.

Methods. A series of different molecular weight (MW) proteins were iodinated, incorporated into Carbopol hydrogels, injected subcutaneously into rats, and monitored using X-ray fluorescence (XRF).

Results. A 10 mg/mL minimum concentration of Carbopol-940 was necessary before protein [50 mg/mL iodinated bovine serum albumin (I-BSA)] retention times increased with increasing hydrogel concentration. The decreasing protein signal was not caused by outward protein diffusion or iodoprotein hydrolysis. As the protein MW increased, protein retention times lengthened [e.g., 6.2 h for insulin (5.7 kDa) to 13.3 h for thyroglobulin (669 kDa)]. Protein disappearance was monophasic first-order for some proteins and biphasic first-order for others. The disappearance rate constant ranged from 0.093 ± 0.005 h 1/2 to 0.187 ± 0.057 h 1/2, indicating gel erosion rather than protein diffusion as the rate-limiting mechanism. Entrapped I-BSA in Carbopol-1342 NF, pH 7.4, and Carbopol 2001-ETD, pH 7.4, gel matrices yielded different disappearance rates and profiles than Carbopol-940. The overall 50% disappearance rate of I-BSA was greatest for Carbopol-1342 NF (41 ± 8 h), followed by Carbopol-2001 ETD (25 ± 2 h) and Carbopol-940 (10.5 ± 0.7 h).

Conclusion. XRF is a noninvasive technique that can be used to follow the status of macromolecules in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. F. Harrison and A. Rosenfield. Research introduction, and use: Advancing from Norplant. Contraception 58:323-334 (1998).

    Google Scholar 

  2. J. L. Cleland. Protein delivery from bio#x00B0radable microspheres. Pharm. Biotechnol. 10:1-43 (1997).

    Google Scholar 

  3. P. Caliceti, F. Veronese, O. S#x03A7;avon, S. Lora, M. Carenza. Controlled release of proteins and peptides from hydrogels synthesized by gamma ray-induced polymerization. Farmaco 47:275-286 (1992).

    Google Scholar 

  4. H. Tanaka, M. Matsumura, and I. A. Veliky. Diffusion characteristics of substrates in Ca-alginate gel beads. Biotech. Bioeng. 26:53-58 (1994).

    Google Scholar 

  5. W. R. Gombotz and S. F. Wee. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31:267-285 (1998).

    Google Scholar 

  6. J. M. Barichello, M. Morishita, K. Takayama, and T. Nagai. Absorption of insulin from Pluronic F-127 gels following subcutaneous administration in rats. Int. J. Pharm. 184:189-198 (1999).

    Google Scholar 

  7. G. L. Yewey, E. G. Duysen, S. M. Cox, and R. L. Dunn. Delivery of proteins from a controlled release injectable implant. Pharm. Biotech. 10:93-97 (1997).

    Google Scholar 

  8. Bulletin PH-4 (US). Carbopol resin references in the 1993 Physicians' Desk Reference, B. F. Goodrich, Cleveland, Ohio, 1993.

    Google Scholar 

  9. H. Park and J. R. Robinson. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm. Res. 4:457-464 (1987).

    Google Scholar 

  10. N. A. Peppas, P. Bures, W. Leobandung, and H. I#x03A7;kawa. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50:27-46 (2000).

    Google Scholar 

  11. Carbopol Water-Soluble Resins Technical Bulletin GC-67, The B.F. Goodrich Company Specialty Chemicals, Cleveland, Ohio 44141-3247.

  12. P. B. Testa and J. C. Etter. Apport de la rhÉologie À l'Étude des interactions entre les macromolÉcules de Carbopol® ainsi qu'À la dÉtermination semi-quantitative de la force ionique de leur dispersionsPharm. Acta Helv. 48:378-388 (1973).

    Google Scholar 

  13. F. Kawai. Bacterial #x00B0radation of acrylic oligomers and polymers. Appl. Microbiol. Biotechnol. 39:382-385 (1993).

    Google Scholar 

  14. Y. Yamasaki, K. Sumimoto, M. Nishikawa, F. Yamashita, K. Yamaoka, M. Hashida, and Y. Takakura. Pharmacokinetic analysis of in vivo disposition of succinylated proteins targeted to liver nonparenchymal cells via scavenger receptors: importance of molecular size and negative charge density for in vivo r J. Pharmacol. Exp. Ther. 301:467-477 (2002).

    Google Scholar 

  15. K. H. Sprugel, J. M. McPherson, A. W. Clowes, and R. Ross. Effects of growth factors in vivo I. Cell ingrowth into porous subcutaneous chambers. Am. J. Pathol. 129:601-613 (1987).

    Google Scholar 

  16. M. TobÍo, J. Nolley, Y. Guo, J. McIver, and M.J. Aloso. A novel system based on a Poloxamer / PLGA blend as a tetanus toxoid delivery vehicle. Pharm. Res. 16:682-688 (1999).

    Google Scholar 

  17. S. Cohen, H. Bernstein, C. Hewes, M. Chow, and R. Langer. The pharmacokinetics of, and humoral responses to, antigen delivered by microencapsulated liposomes. Proc. Natl. Acad. Sci. USA 88:10440-10444 (1991).

    Google Scholar 

  18. A. Plum, H. AgersØ, and L. Andersen. Pharmacokinetics of the rapid-acting insulin analog, insulin aspart, in rats, dogs, and pigs, and pharmacodynamics of insulin aspart in pigs. Drug Metab. Dispo. 28:155-160 (2000).

    Google Scholar 

  19. T. Morita, Y. Sakamura, Y. Horikiri, T. Suzuki, and H. Yoshino. Evaluation of in vivo release characteristics of protein-loaded biode#x00B0radable microspheres in rats and severe combined immunodificiency disease mice. J. Control. Release 73:213-221 (2001).

    Google Scholar 

  20. H. J. Lee and W. M. Pardridge. Pharmacokinetics and delivery of Tat and Tat-protein conjugates to tissues in vivo. Bioconjug. Chem. 12:995-999 (2001).

    Google Scholar 

  21. J. D. Robertson, E. Ferguson, M. Jay, and D. J. Stalker. Noninvasive in vivo percutaneous absorption measurements using X-ray florescence. Pharm. Res. 9:1410-1414 (1992).

    Google Scholar 

  22. D. S. MacLean, J. D. Robertson, M. Jay, and D. J. Stalker. Noninvasive measurement of protein release from subcutaneous depo formulations in vivo using X-ray fluorescence. J. Control. Release 34:167-173 (1995).

    Google Scholar 

  23. R. Langer and J. Folkman. Polymers for the sustained release of proteins and other macromolecules. Nature 263:797-800 (1976).

    Google Scholar 

  24. M. T. am Ende and A. G. Mikos. Diffusion-controlled delivery of proteins from hydrogels and other hydrophilic systems. Pharm. Biotech. 10:139-165 (1992).

    Google Scholar 

  25. J. M. Barnes, and J. Trueta. Absorption of bacteria, toxins and snake venoms from the tissues. Lancet 1:623-626 (1941).

    Google Scholar 

  26. D. Marshak and D. Liu (eds.). Proteins Formulation, Delivery, and Targeting, Current Communication in Molecular Biology, Cold Spring Harbor Laboratory, New York, 1989.

    Google Scholar 

  27. A. Kiku#x03A7;, M. Kawabu#x03A7;, A. Watanabe, M. Sugihara, Y. Sakurai, and T. Okano. Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights. J. Control Release 58:21-28 (1999).

    Google Scholar 

  28. S. Sato, C. D. Ebert, and S. W. Kim. Prevention of insulin self-association and surface adsorption. J. Pharm. Sci. 72:228-232 (1983).

    Google Scholar 

  29. M.T. am Ende and N. A. Peppas. FTIR spectroscopic investigations and modeling of solute / polymer interactions in the hydrate state. J. Biomater. Sci. Polymer Edn. 10:1289-1302 (1999).

    Google Scholar 

  30. P. G. Righetti and T. Caravaggio. Isoelectric points and molecular weights of proteins. A table. J. Chromatogr. 127:1-28 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald S. MacLean-McDavitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLean-McDavitt, D.S., David Robertson, J. & Jay, M. Monitoring the in Vivo Delivery of Proteins from Carbomer Hydrogels by X-Ray Fluorescence. Pharm Res 20, 435–441 (2003). https://doi.org/10.1023/A:1022612422769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022612422769

Navigation