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Abstract. The problem is to determine the optimum size of nonsensitiveness regions for
the level of statistical tests. This is closely connected with the problem of the distribution
of quadratic forms.
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1. INTRODUCTION

In solution of standard statistical problems in a linear regression model with in-
accurate variance components a question arises whether and how much these inac-
curacies influence estimators of unknown parameters, the position and shape of the
confidence ellipsoids, the level of statistical tests and their power function. Let us
consider the problem connected with the risk of a test. It is obvious that differences
619 between approximate and true values of variance components can cause decrease
or increase in the value of the risk of the test. Let us admit the risk of the test « to
be worse by a value ¢, i.e. the level of the test is equal to a+¢. Then we want to find
the region R. of points §1 such that for all 419 € R. the risk of the test is not greater
than the value a+¢. This region R. is called the nonsensitiveness region. Evidently,
the greater the region R., the greater are the differences 619 and thus so much the
more these differences 01 can be neglected. How to determine each nonsensitiveness
region, i.e. for the estimators of unknown parameters, for confidence ellipsoids, etc.
is given in [3].

* This work was supported by the Council of the Czech Government J14/98: 153 1000 11.
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The aim of the paper is to offer a procedure how to optimize the size of the
nonsensitiveness region R..

2. THE DISTRIBUTION OF QUADRATIC FORMS

Let Y be normally distributed n-dimensional random vector with the mean equal
to 0 and with the positive definite covariance matrix X, i.e. Y ~ N, (0, X). Counsider
a quadratic form Q = (Y +u) A(Y + ), where p € R™ and A is a symmetric matrix.
Then there exists a non-singular linear transformation of the expression Q in the form

(21) Q= Z)\TX?T(&‘),
r=1

.. . 1 1 . .
where \,. are distinct non-zero eigenvalues of X2 AXz, f, are their respective mul-
n

tiplicities. The noncentrality parameter ,. is given by 6, = > ~;, where

i=1
U REITITE SutT TP YED W
E { 0, X # Ar,
g; are eigenvectors from the spectral decomposition
1 1 - ’ ’ L, i =],
YzAX: —;)\igigia gigj_{o, i
and X?”r (6;), 7 =1,...,m, are independent x2-variables with f, degrees of freedom.

Lemma 2.1. The characteristic function of (2.1) is

_ . _fT/Q . T
(2.2) \Il(t) = I | (1 - 21/\rt) exp{l E 71 9Nt }

r=1 r=1

Proof. The characteristic function of the random variable x2(4) is

10t
U(t) = (1 2it)~F/2 L
(0= (1= 202 oxp{ 20

The result follows from properties of characteristic functions:
Y =AX, e R = Uy (t) = Ux(\t)

and

X1,..., X, independent random variables = Ux, 1 x, (t) = H U, (t).

i=1
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To obtain the probability density by integration of the inversion formula appears
hopeless, except for the particular case m = 1. Thus, the only way how to compute
the distribution of the variable Q is to use numerical integration of the inversion
formula. For the cumulative distribution function F'(z) we have

1 1 [t ;

F(z)=-— —/ t Im{e "W (t)} dt.

2 T Jo

Using some geometric relations this equation can be rewritten, after the substitution

2t = u, to the expression

1 1 [T sin 7 (u)
2.3 Plo<at—L_1 |
=9 e<al 2 n /0 uo(u)
where
1 S 57»/\7»’11, 1
)= 3 3| frasetan(hna) 1355 ] - o
2 1= 0,222
= ]+ 2?7/ e ey y
o(u) T:1( + Au®)/ "/ *exp P wwer:

Since the function up(u) increases monotonically towards +o0, in numerical work
the integration in (2.3) will be carried out over a finite range 0 < u < U only. The
upper bound U results from the assumption that the error of integration must be
less than w. Let tyy denote the error of truncation, i.e. we get the assumption

U uo(u) )

by = 1/"’00 sin 7(u) du< ¥
T

The value |t7| can be bounded above by Ty, where

i 1K 6,22U2
-1 _ k lfT - T\
(2.4) Tyt =kt [ exp{QgiHA%m},
with k=3 > f.
r=1
The probability density g(z) of the quadratic form Q could be computed by using

a formula analogous to (2.3). In fact,

T cosT(u
(2.5) g(x) = 1/0 QT()) du.
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Due to the absence of the factor u ! in the integrand in the expression (2.5), numer-
ical integration, for the same accuracy, can be expected to require a slightly larger
number of steps than is needed to compute the distribution function. For more detail
cf. [1].

If A is a p.s.d. matrix, then A; > 0, ¢ = 1...,n. In such a case, another way
how to compute the distribution of the quadratic form Q is on the basis of the
approximation of the linear combination of the independent noncentral x?-variables.

Lemma 2.2. Let Ay >0 and Ay > 0. Let x7 (1) and x7,(d2) be stochastically
independent. Then

(2.6) )\1X?cl ((51) + /\2)(?2 ((52) ~ /\X?c(é),
where
Fo ALfL+ A3 f2) Anfi + Aadt + Ao fo + Aod2)?
(A2f1 4+ A281 + A3 fa + A302)? ’
\ M f1+ A01 + A3 fa + A302
A1 M0+ Aafa + Aada’
5= (A201 + A302) (A1 f1 4+ Aid1 + Ao fa + Aada)?

(A2 f1 4+ A301 + A3 fo + A\262)2

Proof. The basic characteristics for the random variable Axfc(é) are

E(\XF(8)) = A(f +9),
var(Ax}(8)) = A(2f + 49).

Results follow from the solution of the system

A1(f1 4 61) + Xa(fa + 02) = A(f + 9),
A2(2f1 4 461) + A2(2f2 4 465) = N2(2f + 46),
AT61 + A505 = A%6.

O

Remark 2.3. The approximation (2.6) is not unique. Another type of the
approximation can be derived for example under assumptions that the first three
moments of y2-variables must be equal. The quality of the approximation (2.6) is
shown in Example 4.1.
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Remark 2.4. The assumption of the matrix A to be p.s.d. is necessary in the
above mentioned approximation. If A is not p.s.d. we could use the numerical way
for computing the probability of the quadratic form Q only.

Finally, we can approximate the noncentral y2-distribution by the central x2-dis-
tribution.
Lemma 2.5.

g+20
(2'7) X?J(é) ~ g+ ) X%g+5>2 (0)

g+29

Proof. It can be proved analogously to the proof of Lemma 2.2 (cf. also in [2]).
O

3. NONSENSITIVENESS REGIONS
Let
(31) Y ~N,(XB,X(0)), B¢e [R’“, ded={d: 9k, 9;>0,...,9, >0},

where Y is an n-dimensional random vector (observation vector), X, x; a known

matrix (design matrix), 3 an unknown vector (parameter of the first order), 3 (1)

P
> 9;V; a covariance matrix, ¥ an unknown vector (parameter of the second order)

:3;11d Vi,...,V, known positive semidefinite matrices of the type n x n.

In the sequel the matrix X will be supposed to be of the full rank in columns,
ie. r(X) =k < n, and X(9) is positive definite for all ¥ € ¥. In such a case, the
mixed linear model (3.1) is called regular.

Let ¥* be the true value of the parameter 9. Let the null hypothesis concerning
the parameter 3 be

(3.2) Ho: HB3+h =0,

where Hgx is a given matrix with the rank r(H) = ¢ < k and h is a known
g-dimensional vector. Let the alternative hypothesis be

(3.3) H,: HB+h #0.
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Lemma 3.1. Let the regular mixed linear model (3.1) and hypotheses (3.2) and
(3.3) be under consideration. Let

(3.4) Ty (Y ,9*) = (HB(Y ,9*) + h) [H(X'S™1(9*) X)) ' H'| Y (HB(Y,9") + h),
where
B(Y,9") = (X' 19" X) ' X'S 1 (9")Y.

(i) If Hy is true, then the statistic Ty (Y, 9*) has the central chi-square distribution
with q degrees of freedom.

(ii) If Hy is not true, then Ty (Y ,9*) has the noncentral chi-square distribution
with q degrees of freedom and the parameter of its noncentrality is

§=(HB+h)[HX'S'(9)X) 'H'|"*(HB + h).

Proof. Both statements follow from the second fundamental theorem of the
least squares theory given in [4], p. 155. O

The statistic T (Y, 9*) has been used for testing the hypothesis Hy against H,.
If Ty (y,9*) > x2(0,1 — «), where y means a realization of Y, then Hy is rejected
with the risk o. Here x2(0,1 — a) denotes (1 — o)-quantile of x2(0).

Let 9* be changed into ¥* + §9. We will study how the change 9 influences the
risk of the test. That is why in the following we will suppose Hj to be true.

Theorem 3.2. Let the regular mixed linear model (3.1) and the hypothesis (3.2)
be under consideration. Let Hy be true and let

(Y, 9)

0Ty = 6 .
H o 9=0~

Then

(3.5) 0Ty = —2[HB(Y ,9%) + h) CyFyX(69)S 1 (9*)(Y — XB(Y,9%))
— [HB(Y,9%) + h)'Cy Fu2(69) Fyy Cu[HB(Y ,9") + h),

where
Fy = HX'S'(9")X) ' X' H9)
and
Cy=(HX'E199)X)'H')" L.
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The mean value of 6Ty is
(3.6) E(0TH|B,9") = =69 [Tx(UxV1),..., Tx(UuV,)],

where Uy = F},Cr Fr and Tr(Up) means the trace of the matrix Uy. The variance
of (STH is

(3.7) var(8T|8,9%) = 4 Te{Un S(69) [ Mx Z(9*) Mx |2 (59)}
+ 2 Te{Un 2 (09) Uy S(59)},

where
[Mx2 (9" )Mx]t =27 19*) - 19" X[ X' 19 X] L X' 271 (97).

Proof. Proof can be found in [3]. O

The mean value F(6Ty) depends on 04 linearly and the term t/var(67y) depends
linearly on the norm ||09| = /(69)'(69). Let the function ®(69), 69 € RP, be
defined as follows

(3.8) B(69) = -6 ag + t/ 59 A0,
where for i, =1,...,p

(3.9)  {Ao}i; =2Te(UnV;UnVj) + 4 Te(Un Vi[Mx X(9") Mx]"Vj),
(3.10) a0 = [Te(Un Vi), ..., Te(Us V)]

Definition 3.3. Let
(3.11) Re ={009: 9 € RP, &(§9) < .},
where J. is given by
P{XC0) =2 x2(0,1—a) =6} =a+e.

The set R. is called the nonsensitiveness region for the risk of the test.
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Lemma 3.4. Let the regular mixed linear model (3.1) and the hypothesis (3.2)
be under consideration. Let Hy be true and let ag and Ag be given by (3.10) and
(3.9), respectively. The boundary of the set R. is

242
(312) R - {w: (69 — m0) (2Ao — aoal)(59 — mo) = ﬂ‘sit}
—apAj agp

Oc
t2—aj Ay ao

where xo = Ajag, 6. = Xg(O, 1-a)-— Xg(O, 1—a—¢) and ¢, t are chosen

positive numbers. Here A, means g-inverse of the matrix Ay.
Proof. It follows from the solution of the equation ®(61) = . from Defini-

tion (3.3) of the nonsensitiveness region. For details see [3]. O

Theorem 3.5. Let the regular mixed linear model (3.1) and hypotheses (3.2),
(3.3) be under consideration. If Hy is true, then

(3.13) 69 € Re = P{Tu(Y,9" +09) 2 x2(0,1-a)} <a+e.

Proof. Proof can be found in [3]. O

It is easy to see that R. is greater for lower values of ¢t € (0,00). The minimum
value of the parameter ¢, i.e. the maximum size of the nonsensitiveness region, can
be determined from the natural condition

E(0Twy) + tv/var(0Ty) = q(1 — o),

where ¢(1 — @) is a (1 — a)-quantile of a distribution of the random variable §7y
with a sufficiently small . Thus the problem is to determine the distribution of 67,
which enables us to determine the optimum value of the parameter ¢.

Lemma 3.6. Let the regular mixed linear model (3.1) and the hypothesis (3.2)
be under consideration. Let the null hypothesis be true. Then

0T =—>_ Ax3,(0),

r=1
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where \, are distinct non-zero eigenvalues of the matrix W2AW?: with multiplic-
ity f., random variables Xfcr (0) are independent and

— H(X'S ' (99)X) 'H', 0
- 0, S(9) - X(X'Z 19 X)X )’
U CHFH‘/iF[/{CHa CHFHWE_1<’I.9*) 1
i = ) 1=1,. Iy %)
=1(9*)V; Fly Cy, 0 P

P
A= "o0,U;.
=1

Proof. Let us denote

n=HB(Y,9) +h,
v=Y — XB(Y,9).

Then, taking H, into consideration, we have
n 0
~ n 7W ;

H(X'S1(9%)X)"'H', 0
W= < 0, B(9%) — X(X’E—l(ﬁ*)X)—lX’>

where

Now we can rewrite the expression (3.5) of the correction term 67 in the form

Mhi?ﬁ{wGUﬂECD}(mvﬂA<Z»

where
U _ | CaFaViF;Ch, CuFpV;E 1 (9%)
e 19V, F},Ch, 0 ’

p
A= ZMZUZ-.
i=1

!

Since the vector (n’,v’)’ is normally distributed, using the transformation (2.1) we

obtain
m
0T == A3, (0),
r=1
where \, are distinct non-zero eigenvalues of the matrix W2AW 2 with multiplicity
fr, 0 =0 and Xch (0), r =1,...,m, are independent. O
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Now can determine the optimum value t* of the parameter ¢ maximizing the size
of the nonsensitiveness region R..

Theorem 3.7. Let the regular mixed linear model (3.1) and the hypothesis (3.2)
be under consideration. Let matrices W and A be defined as in Lemma 3.6. Let Hy
be true. The optimum value t*, which maximize the size of R., is

t* = max{tsy: |[0Y| = 1},
where t5y is a solution of the equation

(3.14) E(3T#|69) + tso\/var(0Tg]60) = q(1 — a), |69 =1

and
E(3Ty|69) = Z/\ frs

var(0Ty|69) = 2 Z A2 f,

r=1

where \; are distinct non-zero eigenvalues of the matrix W32 AW with multiplicity
fj;j: 1,...,m

Proof. With respect to Lemma 3.6, it is sufficient to prove that the value
the parameter ¢ is independent on the norm ||§®¥| in the fixed direction 9. Let
59 = k&9, k> 0, |09]| = 1. Then ||519H = k|09 and 6TH(519) = kdéTy(69). Hence
the mean value, the standard deviation and quantiles of 0Ty are proportional to the
norm [|09]| and the equation (3.14) implies t5; = ts9. O

4. NUMERICAL RESULTS

At the beginning of this section the results for computing the distribution of
quadratic forms will be given. An example of the determination of the maximum
size of the nonsensitiveness region will be given in the second part.

Simpson’s rule is used for numerical integration. The accuracy of computation of
numerical integration is w = 0.001. In Tab. 1 a comparison of the probability value
of quadratic forms Q;, i = 1,...,4, and their corresponding approximate noncentral
x2-variables from Example 4.1 are given. The a-quantiles, denoted by z., of the
approximate y2-variable are also shown. In Tab. 2 the quadratic form Qs, when A
is not p.s.d., is shown. In this case, the results are compared with [1].
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Example 4.1. The quadratic forms and their approximation.

Q1 = x2(0.2) +2x2(3.3) ~ 1.8384)Z 4054(3.9649),
Qa2 = 5x30(4) + 3x3(7) ~ 4.2844x 75 5612(8.8799),

Q3 = 2x35(1.5) + 3x3(4.7) ~ 2.4416X74 1931 (8.1019),
Q4 = 1.4x2(0.8) 4 8.5x2(6.3) ~ 7.7316X2 1554(7.6407),

Qs = 0.1693X3 9426(0) — 0.253x7 g47(0).

(9} Do Q [o
o Ta P To P To P To P
0.01 3.7227 | 0.0086 | 42.7505 | 0.0100 || 22.6837 | 0.0086 || 33.3823 | 0.0076
0.05 6.4723 | 0.0466 | 57.3855 | 0.0496 | 30.6599 | 0.0471 51.7346 | 0.0459
0.25 | 12.4584 | 0.2498 || 83.4492 | 0.2499 || 44.9574 | 0.2501 || 87.6815 | 0.2512
0.50 | 18.2406 | 0.5033 || 105.4013 | 0.5008 || 57.0617 | 0.5036 || 119.9470 | 0.5046
0.75 | 25.4544 | 0.7522 | 130.6387 | 0.7507 || 71.0263 | 0.7525 || 158.4509 | 0.7523
0.95 | 38.4565 | 0.9488 | 172.8972 | 0.9496 || 94.4923 | 0.9490 || 225.1027 | 0.9466
0.99 | 49.4923 | 0.9887 | 206.8763 | 0.9881 || 113.4154 | 0.9890 || 280.0111 | 0.9886

Table 1. Probability P = P(Q; < za), 1 = 1,2,3,4.

x P [1]
-2 0.0918 | 0.0898

0 0.5927 | 0.5939

2.5 || 0.9901 | 0.9902

Table 2. Probability P = P(Qs < ).

How we can see in Tabs. 1 and 2, the accuracy 0.005 is obtained in computing the

probability value by the above mentioned numerical algorithm and by the approxi-

mation from Lemma 2.2. A greater accuracy has not been reached yet.

Example 4.2. Let a straight line be given in a plane. We have four measure-

ments at points x = 1,2,3,4. The accuracy of the measurement is characterized by
the standard deviation o7 = 0.004 (at points z = 1 and = = 2) and o2 = 0.001
(at points © = 3 and = 4). Let the null hypothesis be “the coefficients in the

equation of the straight line are equal”’. The problem is to maximizing the size of

the nonsensitiveness region for the risk of the test.

The process of measurement if the error vector is assumed to be normally distrib-

uted can be modelled by

where

P
Il
_ e e

Y ~ Ny X8, Z(97)],

[ENEGCRE R

’ ﬂ:<ﬁl

fa

)
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and

> (9%)

The null hypothe

16 - 1079, 0, 0, 0

B 0, 16 - 1079, 0, 0

N 0, 0, 1-1076, 0
0, 0, 0, 1-10-6

sis is

Hy: (1,-1)8 =0.

In this case, we obtain the correction term 67y in the form

Numerical results of coefficients Ay, Ao and of values ts59 for different directions
09 = (cos~y,sin~y)’, i.e. for different angles v, are given in Tab. 3 and in Figs. 1, 2.
Symbols ¢(0.95) and ¢(0.99) describe the corresponding quantiles of the distribution
of the random variable §Ty, parameters t; and to denote values of t59 for the risk

of the test a; = 0.05 and as = 0.01, respectively.

6Ty = M1x7(0) + A2x3(0).

Y A1 A2 q(095) q(099) t1 to
0 —50675 18632 49380 | 100700 || 1.07 | 1.74
/16 | —154502 28004 61100 | 137000 || 0.84 | 1.19
n/8 —300908 84815 | 210300 | 443000 | 0.96 | 1.49
n/4 —557706 | 190460 | 496000 | 1020000 || 1.04 | 1.66
3n/8 | —730488 | 267999 | 709800 | 1448000 | 1.07 | 1.74
n/2 —792371 305049 | 830000 | 1687500 || 1.10 | 1.81
5n/8 | —733849 | 259884 | 801000 | 1668750 | 1.11 | 1.88
3n/4 | —563886 | 241955 | 664000 | 1331000 | 1.14 | 1.90
/8 | —308746 | 151859 | 429000 | 848000 | 1.20 | 2.07
157/16 | —161829 98184 | 288900 | 561000 || 1.32 | 2.33
T 50675 | —18632 | 179400 | 321000 || 1.93 | 3.78
17n/16 154502 | —28004 | 568400 | 1018300 | 1.99 | 4.02
91/8 300908 | —84815 | 1083500 | 1925000 | 1.96 | 3.87
5m/4 557706 | —190460 | 1984000 | 3540000 || 1.94 | 3.81
11n/8 730488 | —267999 | 2586200 | 4631050 || 1.93 | 3.79
3n/2 792371 | —305049 | 2793000 | 4920000 || 1.92 | 3.69
131/8 733849 | —295884 || 2580000 | 4626000 || 1.91 | 3.74
/4 563886 | —241955 | 1973000 | 3547000 || 1.90 | 3.71
15m/8 308746 | —151859 | 1068000 | 1928000 | 1.87 | 3.64
31n/16 161829 | —98184 | 548500 | 1016500 || 1.81 | 3.56

Table 3. Values of t; and t5 in dependence on the direction §19.
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From Table 3, the minimum value of parameter ¢ which optimizes the size of the
nonsensitiveness region R. for the risk of the test « is

a=0.05: t] = max{t;: |9 =1} =1.99,
a=001: ¢ = max{ts: |69 = 1} = 4.02.

25

0.51

0 . 1 . . . . )
0 1 2 3 4
v (rad)

Figure 1. Dependence of the parameter 1 on the angle ~.

5
4.5r
s
3.51
3t
~ 251
2t

15F

[N
T

0.5¢

v (rad)

Figure 2. Dependence of the parameter ¢2 on the angle .

At the end we determine the set R. in dependence on the risk of the test o and
on the given number . Obviously,

Tu(Y,9*) ~ x3(0).
From definition (3.3) we obtain
5. =x3(0,1—a) —x3(0,1— o —e).
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Values of . for some « and € are given in Tabs. 4 and 5. Further, we have to express
the center of R.. This point &y depends on . and on the parameter ¢. In our case,
the boundary of R. given by (3.12) can be characterized by the ellipse. Hence the
nonsensitiveness region R. for the risk « of the test can be expressed as the set of
points

R. = {69: 69 € R?, (69 — o) K (t*)(69 — o) < s},
where
0.0221-10'3, —0.1312-10'3
Kt = ’
() {0.1312 <103, 5.4723- 1013] ’

K(t3) = 0.0093 - 1013, —0.0487 - 10'3
227 1 20.0487-10%3,  2.3017-10%3

and the other terms are given in Tabs. 4 and 5.

€ e {zo}1.1 {z0}2.1 s
0.015 | 0.339 | 7.8378-10~7 | 0.4899-10~7 | 0.1315
0.005 || 0.113 | 2.6126-10~7 | 0.1633-10~7 | 0.0146
0.002 || 0.045 | 1.0404-10=7 | 0.0650 - 10~7 | 0.0023
0.001 || 0.023 | 0.5318-10~7 | 0.0332- 107 | 0.0006

Table 4. Expressions in R for o = 0.05, t] = 1.99.

5 e {xo}11 {z0}2.1 s
0.015 | 1.61 | 8.2413-107 | 0.5151-10~7 | 2.6750
0.005 || 0.537 | 2.7488-10~7 | 0.1718-10~7 | 0.2976
0.002 || 0.215 | 1.1005-10=7 | 0.0688 - 10~7 | 0.0477
0.001 || 0.107 | 0.5477-10~7 | 0.0342- 107 | 0.0118

Table 5. Expressions in Re for o = 0.01, 5 = 4.02.

All nonsensitiveness regions R. are demonstrated in Figs. 3 and 4, where Fig. 3,
Fig. 4 correspond to the above mentioned results in Tab. 4 and Tab. 5, respectively.
In Figs. 3 and 4 we can see natural properties of the nonsensitiveness regions R. for
the risk of the test:

e the lower given number ¢, the lower R.,
e the greater value of the parameter ¢, the lower R.,

e the lower the value of the risk of the test «, the greater R..
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Figure 4. Nonsensitiveness regions R¢ for o = 0.01 and t* = 4.02.
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