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Abstract. The problem is to determine the optimum size of nonsensitiveness regions for
the level of statistical tests. This is closely connected with the problem of the distribution
of quadratic forms.
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1. Introduction

In solution of standard statistical problems in a linear regression model with in-
accurate variance components a question arises whether and how much these inac-

curacies influence estimators of unknown parameters, the position and shape of the
confidence ellipsoids, the level of statistical tests and their power function. Let us

consider the problem connected with the risk of a test. It is obvious that differences
δϑ between approximate and true values of variance components can cause decrease

or increase in the value of the risk of the test. Let us admit the risk of the test α to
be worse by a value ε, i.e. the level of the test is equal to α+ε. Then we want to find

the region Rε of points δϑ such that for all δϑ ∈ Rε the risk of the test is not greater
than the value α+ε. This region Rε is called the nonsensitiveness region. Evidently,
the greater the region Rε, the greater are the differences δϑ and thus so much the

more these differences δϑ can be neglected. How to determine each nonsensitiveness
region, i.e. for the estimators of unknown parameters, for confidence ellipsoids, etc.

is given in [3].

*This work was supported by the Council of the Czech Government J14/98: 153 1000 11.
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The aim of the paper is to offer a procedure how to optimize the size of the

nonsensitiveness region Rε.

2. The distribution of quadratic forms

Let Y be normally distributed n-dimensional random vector with the mean equal

to 0 and with the positive definite covariance matrix Σ, i.e. Y ∼ Nn(0,Σ). Consider
a quadratic formQ = (Y +µ)′A(Y +µ), where µ ∈ �n andA is a symmetric matrix.

Then there exists a non-singular linear transformation of the expressionQ in the form

(2.1) Q =
m∑

r=1

λrχ
2
fr
(δr),

where λr are distinct non-zero eigenvalues of Σ
1
2AΣ

1
2 , fr are their respective mul-

tiplicities. The noncentrality parameter δr is given by δr =
n∑

i=1
γi, where

γi =

{
g′iΣ

− 12µµ′Σ−
1
2 gi, λi = λr ,

0, λi �= λr ,

gi are eigenvectors from the spectral decomposition

Σ
1
2AΣ

1
2 =

n∑

i=1

λigig
′
i, g′igj =

{
1, i = j,

0, i �= j

and χ2fr
(δr), r = 1, . . . , m, are independent χ2-variables with fr degrees of freedom.

Lemma 2.1. The characteristic function of (2.1) is

(2.2) Ψ(t) =
m∏

r=1

(1 − 2iλrt)−fr/2 exp

{
i

m∑

r=1

δrλrt

1− 2iλrt

}
.

�����. The characteristic function of the random variable χ2k(δ) is

Ψ(t) = (1− 2it)−k/2 exp

{
iδt
1− 2it

}
.

The result follows from properties of characteristic functions:

Y = λX, λ ∈ �1 ⇒ ΨY (t) = ΨX(λt)

and

X1, . . . , Xn independent random variables ⇒ ΨX1+...Xn(t) =
n∏

i=1

ΨXi(t).

�
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To obtain the probability density by integration of the inversion formula appears

hopeless, except for the particular case m = 1. Thus, the only way how to compute
the distribution of the variable Q is to use numerical integration of the inversion
formula. For the cumulative distribution function F (x) we have

F (x) =
1
2
− 1

�

∫ +∞

0
t−1 Im{e−itxΨ(t)} dt.

Using some geometric relations this equation can be rewritten, after the substitution
2t = u, to the expression

(2.3) P{Q � x} = 1
2
− 1

�

∫ +∞

0

sin τ(u)
u�(u)

du,

where

τ(u) =
1
2

m∑

r=1

[
fr arctan(λru) +

δrλru

1 + λ2ru
2

]
− 1
2
xu,

�(u) =
m∏

r=1

(1 + λ2ru
2)fr/4 exp

{
1
2

m∑

r=1

δrλ
2
ru
2

1 + λ2ru
2

}
.

Since the function u�(u) increases monotonically towards +∞, in numerical work
the integration in (2.3) will be carried out over a finite range 0 � u � U only. The
upper bound U results from the assumption that the error of integration must be

less than ω. Let tU denote the error of truncation, i.e. we get the assumption

tU =
1
�

∫ +∞

U

sin τ(u)
u�(u)

du � ω

2
.

The value |tU | can be bounded above by TU , where

(2.4) T−1U = �kUk
m∏

r=1

|λr|
1
2 fr exp

{
1
2

m∑

r=1

δrλ
2
rU
2

1 + λ2rU
2

}
,

with k = 1
2

m∑
r=1

fr.

The probability density g(x) of the quadratic form Q could be computed by using
a formula analogous to (2.3). In fact,

(2.5) g(x) =
1
�

∫ +∞

0

cos τ(u)
�(u)

du.
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Due to the absence of the factor u−1 in the integrand in the expression (2.5), numer-

ical integration, for the same accuracy, can be expected to require a slightly larger
number of steps than is needed to compute the distribution function. For more detail
cf. [1].

If A is a p.s.d. matrix, then λi � 0, i = 1 . . . , n. In such a case, another way
how to compute the distribution of the quadratic form Q is on the basis of the
approximation of the linear combination of the independent noncentral χ2-variables.

Lemma 2.2. Let λ1 > 0 and λ2 > 0. Let χ2f1(δ1) and χ2f2(δ2) be stochastically

independent. Then

λ1χ
2
f1(δ1) + λ2χ

2
f2(δ2) ≈ λχ2f (δ),(2.6)

where

f =
(λ21f1 + λ22f2)(λ1f1 + λ1δ1 + λ2f2 + λ2δ2)2

(λ21f1 + λ21δ1 + λ22f2 + λ22δ2)2
,

λ =
λ21f1 + λ21δ1 + λ22f2 + λ22δ2
λ1f1 + λ1δ1 + λ2f2 + λ2δ2

,

δ =
(λ21δ1 + λ22δ2)(λ1f1 + λ1δ1 + λ2f2 + λ2δ2)2

(λ21f1 + λ21δ1 + λ22f2 + λ22δ2)2
.

�����. The basic characteristics for the random variable λχ2f (δ) are

E(λχ2f (δ)) = λ(f + δ),

var(λχ2f (δ)) = λ2(2f + 4δ).

Results follow from the solution of the system

λ1(f1 + δ1) + λ2(f2 + δ2) = λ(f + δ),

λ21(2f1 + 4δ1) + λ22(2f2 + 4δ2) = λ2(2f + 4δ),

λ21δ1 + λ22δ2 = λ2δ.

�

������ 2.3. The approximation (2.6) is not unique. Another type of the
approximation can be derived for example under assumptions that the first three

moments of χ2-variables must be equal. The quality of the approximation (2.6) is
shown in Example 4.1.
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������ 2.4. The assumption of the matrix A to be p.s.d. is necessary in the

above mentioned approximation. If A is not p.s.d. we could use the numerical way
for computing the probability of the quadratic form Q only.

Finally, we can approximate the noncentral χ2-distribution by the central χ2-dis-

tribution.

Lemma 2.5.

(2.7) χ2g(δ) ≈
g + 2δ
g + δ

χ2(g+δ)2

g+2δ

(0).

�����. It can be proved analogously to the proof of Lemma 2.2 (cf. also in [2]).
�

3. Nonsensitiveness regions

Let

(3.1) Y ∼ Nn(Xβ,Σ(ϑ)), β ∈ �k , ϑ ∈ ϑ = {ϑ : ϑ ∈ �p , ϑ1 > 0, . . . , ϑp > 0},

where Y is an n-dimensional random vector (observation vector), Xn×k a known
matrix (design matrix), β an unknown vector (parameter of the first order), Σ(ϑ) =
p∑

i=1
ϑiVi a covariance matrix, ϑ an unknown vector (parameter of the second order)

and V1, . . . , Vp known positive semidefinite matrices of the type n× n.

In the sequel the matrix X will be supposed to be of the full rank in columns,

i.e. r(X) = k < n, and Σ(ϑ) is positive definite for all ϑ ∈ ϑ. In such a case, the
mixed linear model (3.1) is called regular.

Let ϑ∗ be the true value of the parameter ϑ. Let the null hypothesis concerning
the parameter β be

(3.2) H0 : Hβ + h = 0,

where Hq×k is a given matrix with the rank r(H) = q � k and h is a known
q-dimensional vector. Let the alternative hypothesis be

(3.3) Ha : Hβ + h �= 0.
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Lemma 3.1. Let the regular mixed linear model (3.1) and hypotheses (3.2) and
(3.3) be under consideration. Let

TH(Y , ϑ∗) = (Hβ̂(Y , ϑ∗) + h)′[H(X ′Σ−1(ϑ∗)X)−1H ′]−1(Hβ̂(Y , ϑ∗) + h),(3.4)

where

β̂(Y , ϑ∗) = (X ′Σ−1(ϑ∗)X)−1X ′Σ−1(ϑ∗)Y .

(i) IfH0 is true, then the statistic TH(Y, ϑ�) has the central chi-square distribution
with q degrees of freedom.

(ii) If H0 is not true, then TH(Y , ϑ∗) has the noncentral chi-square distribution
with q degrees of freedom and the parameter of its noncentrality is

δ = (Hβ + h)′[H(X ′Σ−1(ϑ∗)X)−1H ′]−1(Hβ + h).

�����. Both statements follow from the second fundamental theorem of the
least squares theory given in [4], p. 155. �

The statistic TH(Y , ϑ∗) has been used for testing the hypothesis H0 against Ha.

If TH(y, ϑ∗) � χ2q(0, 1 − α), where y means a realization of Y , then H0 is rejected
with the risk α. Here χ2q(0, 1− α) denotes (1− α)-quantile of χ2q(0).

Let ϑ∗ be changed into ϑ∗ + δϑ. We will study how the change δϑ influences the
risk of the test. That is why in the following we will suppose H0 to be true.

Theorem 3.2. Let the regular mixed linear model (3.1) and the hypothesis (3.2)
be under consideration. Let H0 be true and let

δTH = δϑ′
∂TH(Y , ϑ)

∂ϑ

∣∣∣
ϑ=ϑ∗

.

Then

δTH = − 2[Hβ̂(Y , ϑ∗) + h]′CHFHΣ(δϑ)Σ−1(ϑ∗)(Y −Xβ̂(Y , ϑ∗))(3.5)

− [Hβ̂(Y , ϑ∗) + h]′CHFHΣ(δϑ)F ′
HCH [Hβ̂(Y , ϑ∗) + h],

where

FH =H(X ′Σ−1(ϑ∗)X)−1X ′Σ−1(ϑ∗)

and

CH = (H(X ′Σ−1(ϑ∗)X)−1H ′)−1.
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The mean value of δTH is

(3.6) E(δTH |β, ϑ∗) = −δϑ′[Tr(UHV1), . . . ,Tr(UHVp)]′,

where UH = F ′
HCHFH and Tr(UH)means the trace of the matrix UH . The variance

of δTH is

var(δTH |β, ϑ∗) = 4Tr{UHΣ(δϑ)[MXΣ(ϑ∗)MX ]+Σ(δϑ)}(3.7)

+ 2Tr{UHΣ(δϑ)UHΣ(δϑ)},

where

[MXΣ(ϑ∗)MX ]+ = Σ−1(ϑ∗)−Σ−1(ϑ∗)X[X ′Σ−1(ϑ∗)X]−1X ′Σ−1(ϑ∗).

�����. Proof can be found in [3]. �

The mean valueE(δTH) depends on δϑ linearly and the term t
√
var(δTH) depends

linearly on the norm ‖δϑ‖ =
√
(δϑ)′(δϑ). Let the function Φ(δϑ), δϑ ∈ �

p , be

defined as follows

(3.8) Φ(δϑ) = −δϑ′a0 + t
√

δϑ′A0δϑ,

where for i, j = 1, . . . , p

{A0}i,j = 2Tr(UHViUHVj) + 4Tr(UHVi[MXΣ(ϑ∗)MX ]+Vj),(3.9)

a0 = [Tr(UHV1), . . . ,Tr(UHVp)]
′.(3.10)

Definition 3.3. Let

(3.11) Rε = {δϑ : δϑ ∈ �p , Φ(δϑ) � δε},

where δε is given by

P{χ2q(0) � χ2q(0, 1− α) − δε} = α+ ε.

The set Rε is called the nonsensitiveness region for the risk of the test.
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Lemma 3.4. Let the regular mixed linear model (3.1) and the hypothesis (3.2)
be under consideration. Let H0 be true and let a0 and A0 be given by (3.10) and
(3.9), respectively. The boundary of the set Rε is

(3.12) Rε =

{
δϑ : (δϑ− x0)′(t2A0 − a0a

′
0)(δϑ − x0) =

δ2εt2

t2 − a′0A
−
0 a0

}
,

where x0 = δε

t2−a′0A
−
0 a0

A−
0 a0, δε = χ2q(0, 1−α)−χ2q(0, 1−α− ε) and ε, t are chosen

positive numbers. Here A−
0 means g-inverse of the matrix A0.

�����. It follows from the solution of the equation Φ(δϑ) = δε from Defini-
tion (3.3) of the nonsensitiveness region. For details see [3]. �

Theorem 3.5. Let the regular mixed linear model (3.1) and hypotheses (3.2),
(3.3) be under consideration. If H0 is true, then

(3.13) δϑ ∈ Rε ⇒ P{TH(Y , ϑ∗ + δϑ) � χ2q(0, 1− α)} � α+ ε.

�����. Proof can be found in [3]. �

It is easy to see that Rε is greater for lower values of t ∈ (0,∞). The minimum
value of the parameter t, i.e. the maximum size of the nonsensitiveness region, can
be determined from the natural condition

E(δTH) + t
√
var(δTH) = q(1− α),

where q(1 − α) is a (1 − α)-quantile of a distribution of the random variable δTH

with a sufficiently small α. Thus the problem is to determine the distribution of δTH ,
which enables us to determine the optimum value of the parameter t.

Lemma 3.6. Let the regular mixed linear model (3.1) and the hypothesis (3.2)
be under consideration. Let the null hypothesis be true. Then

δTH = −
m∑

r=1

λrχ
2
fr
(0),

16



where λr are distinct non-zero eigenvalues of the matrix W
1
2AW

1
2 with multiplic-

ity fr, random variables χ2fr
(0) are independent and

W =

(
H(X ′Σ−1(ϑ∗)X)−1H ′, 0

0, Σ(ϑ∗)−X(X ′Σ−1(ϑ∗)X)−1X ′

)
,

Ui =

[
CHFHViF

′
HCH , CHFHViΣ−1(ϑ∗)

Σ−1(ϑ∗)ViF
′
HCH , 0

]
, i = 1, . . . , p,

A =
p∑

i=1

δϑiUi.

�����. Let us denote

η =Hβ̂(Y , ϑ∗) + h,

υ = Y −Xβ̂(Y , ϑ∗).

Then, taking H0 into consideration, we have
(

η

υ

)
∼ Nq+n

[(
0
0

)
;W

]
,

where

W =

(
H(X ′Σ−1(ϑ∗)X)−1H ′, 0

0, Σ(ϑ∗)−X(X ′Σ−1(ϑ∗)X)−1X ′

)
.

Now we can rewrite the expression (3.5) of the correction term δTH in the form

δTH = −
p∑

i=1

δϑi

{
(η′, υ′ )Ui

(
η

υ

)}
= − (η′, υ′ )A

(
η

υ

)
,

where

Ui =

[
CHFHViF

′
HCH , CHFHViΣ−1(ϑ∗)

Σ−1(ϑ∗)ViF
′
HCH , 0

]
,

A =
p∑

i=1

δϑiUi.

Since the vector (η′, υ′)′ is normally distributed, using the transformation (2.1) we
obtain

δTH = −
m∑

r=1

λrχ
2
fr
(0),

where λr are distinct non-zero eigenvalues of the matrixW
1
2AW

1
2 with multiplicity

fr, δr = 0 and χ2fr
(0), r = 1, . . . , m, are independent. �
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Now can determine the optimum value t∗ of the parameter t maximizing the size

of the nonsensitiveness region Rε.

Theorem 3.7. Let the regular mixed linear model (3.1) and the hypothesis (3.2)
be under consideration. Let matricesW and A be defined as in Lemma 3.6. Let H0
be true. The optimum value t∗, which maximize the size of Rε, is

t∗ = max{tδϑ : ‖δϑ‖ = 1},

where tδϑ is a solution of the equation

(3.14) E(δTH |δϑ) + tδϑ

√
var(δTH |δϑ) = q(1− α), ‖δϑ‖ = 1

and

E(δTH |δϑ) = −
m∑

r=1

λrfr,

var(δTH |δϑ) = 2
m∑

r=1

λ2rfr,

where λj are distinct non-zero eigenvalues of the matrixW
1
2AW

1
2 with multiplicity

fj , j = 1, . . . , m.

�����. With respect to Lemma 3.6, it is sufficient to prove that the value

the parameter t is independent on the norm ‖δϑ‖ in the fixed direction δϑ. Let
δ̃ϑ = kδϑ, k > 0, ‖δϑ‖ = 1. Then ‖δ̃ϑ‖ = k‖δϑ‖ and δTH(δ̃ϑ) = kδTH(δϑ). Hence

the mean value, the standard deviation and quantiles of δTH are proportional to the
norm ‖δϑ‖ and the equation (3.14) implies t

δ̃ϑ
= tδϑ. �

4. Numerical results

At the beginning of this section the results for computing the distribution of

quadratic forms will be given. An example of the determination of the maximum
size of the nonsensitiveness region will be given in the second part.

Simpson’s rule is used for numerical integration. The accuracy of computation of
numerical integration is ω = 0.001. In Tab. 1 a comparison of the probability value

of quadratic forms Qi, i = 1, . . . , 4, and their corresponding approximate noncentral
χ2-variables from Example 4.1 are given. The α-quantiles, denoted by xα, of the

approximate χ2-variable are also shown. In Tab. 2 the quadratic form Q5, when A

is not p.s.d., is shown. In this case, the results are compared with [1].
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����� 4.1. The quadratic forms and their approximation.

Q1 = χ23(0.2) + 2χ
2
5(3.3) ≈ 1.8384χ26.8054(3.9649),

Q2 = 5χ210(4) + 3χ26(7) ≈ 4.2844χ216.5612(8.8799),
Q3 = 2χ215(1.5) + 3χ24(4.7) ≈ 2.4416χ216.1031(8.1019),
Q4 = 1.4χ29(0.8) + 8.5χ27(6.3) ≈ 7.7316χ28.7556(7.6407),
Q5 = 0.1693χ29.9426(0)− 0.253χ27.8947(0).

Q1 Q2 Q3 Q4
α xα P xα P xα P xα P

0.01 3.7227 0.0086 42.7505 0.0100 22.6837 0.0086 33.3823 0.0076
0.05 6.4723 0.0466 57.3855 0.0496 30.6599 0.0471 51.7346 0.0459
0.25 12.4584 0.2498 83.4492 0.2499 44.9574 0.2501 87.6815 0.2512
0.50 18.2406 0.5033 105.4013 0.5008 57.0617 0.5036 119.9470 0.5046
0.75 25.4544 0.7522 130.6387 0.7507 71.0263 0.7525 158.4509 0.7523
0.95 38.4565 0.9488 172.8972 0.9496 94.4923 0.9490 225.1027 0.9466
0.99 49.4923 0.9887 206.8763 0.9881 113.4154 0.9890 280.0111 0.9886

Table 1. Probability P = P (Qi � xα), i = 1, 2, 3, 4.

x P [1]
−2 0.0918 0.0898
0 0.5927 0.5939
2.5 0.9901 0.9902

Table 2. Probability P = P (Q5 � x).

How we can see in Tabs. 1 and 2, the accuracy 0.005 is obtained in computing the

probability value by the above mentioned numerical algorithm and by the approxi-
mation from Lemma 2.2. A greater accuracy has not been reached yet.

	
����� 4.2. Let a straight line be given in a plane. We have four measure-

ments at points x = 1, 2, 3, 4. The accuracy of the measurement is characterized by
the standard deviation σ1 = 0.004 (at points x = 1 and x = 2) and σ2 = 0.001

(at points x = 3 and x = 4). Let the null hypothesis be “the coefficients in the
equation of the straight line are equal”. The problem is to maximizing the size of

the nonsensitiveness region for the risk of the test.

The process of measurement if the error vector is assumed to be normally distrib-

uted can be modelled by
Y ∼ N4[Xβ,Σ(ϑ∗)],

where

X =




1, 1

1, 2
1, 3

1, 4


 , β =

(
β1
β2

)
,
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and

Σ(ϑ∗) =




16 · 10−6, 0, 0, 0
0, 16 · 10−6, 0, 0

0, 0, 1 · 10−6, 0
0, 0, 0, 1 · 10−6


 .

The null hypothesis is

H0 : (1,−1)β = 0.

In this case, we obtain the correction term δTH in the form

δTH = λ1χ
2
1(0) + λ2χ

2
1(0).

Numerical results of coefficients λ1, λ2 and of values tδϑ for different directions

δϑ = (cos γ, sinγ)′, i.e. for different angles γ, are given in Tab. 3 and in Figs. 1, 2.
Symbols q(0.95) and q(0.99) describe the corresponding quantiles of the distribution

of the random variable δTH , parameters t1 and t2 denote values of tδϑ for the risk
of the test α1 = 0.05 and α2 = 0.01, respectively.

γ λ1 λ2 q(0.95) q(0.99) t1 t2
0 −50675 18632 49380 100700 1.07 1.74

�/16 −154502 28004 61100 137000 0.84 1.19
�/8 −300908 84815 210300 443000 0.96 1.49
�/4 −557706 190460 496000 1020000 1.04 1.66
3�/8 −730488 267999 709800 1448000 1.07 1.74
�/2 −792371 305049 830000 1687500 1.10 1.81
5�/8 −733849 259884 801000 1668750 1.11 1.88
3�/4 −563886 241955 664000 1331000 1.14 1.90
7�/8 −308746 151859 429000 848000 1.20 2.07
15�/16 −161829 98184 288900 561000 1.32 2.33

� 50675 −18632 179400 321000 1.93 3.78
17�/16 154502 −28004 568400 1018300 1.99 4.02
9�/8 300908 −84815 1083500 1925000 1.96 3.87
5�/4 557706 −190460 1984000 3540000 1.94 3.81
11�/8 730488 −267999 2586200 4631050 1.93 3.79
3�/2 792371 −305049 2793000 4920000 1.92 3.69
13�/8 733849 −295884 2580000 4626000 1.91 3.74
7�/4 563886 −241955 1973000 3547000 1.90 3.71
15�/8 308746 −151859 1068000 1928000 1.87 3.64
31�/16 161829 −98184 548500 1016500 1.81 3.56

Table 3. Values of t1 and t2 in dependence on the direction δϑ.
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From Table 3, the minimum value of parameter t which optimizes the size of the

nonsensitiveness region Rε for the risk of the test α is

α =0.05: t∗1 = max{t1 : ‖δϑ‖ = 1}
.
= 1.99,

α =0.01: t∗2 = max{t2 : ‖δϑ‖ = 1}
.
= 4.02.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

γ  ( rad )

t 1

Figure 1. Dependence of the parameter t1 on the angle γ.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

γ  ( rad )

t 2

Figure 2. Dependence of the parameter t2 on the angle γ.

At the end we determine the set Rε in dependence on the risk of the test α and
on the given number ε. Obviously,

TH(Y , ϑ∗) ∼ χ21(0).

From definition (3.3) we obtain

δε = χ21(0, 1− α)− χ21(0, 1− α− ε).

21



Values of δε for some α and ε are given in Tabs. 4 and 5. Further, we have to express

the center of Rε. This point x0 depends on δε and on the parameter t. In our case,
the boundary of Rε given by (3.12) can be characterized by the ellipse. Hence the
nonsensitiveness region Rε for the risk α of the test can be expressed as the set of

points

Rε = {δϑ : δϑ ∈ �2 , (δϑ− x0)′K(t∗)(δϑ− x0) � s},

where

K(t∗1) =

[
0.0221 · 1013, −0.1312 · 1013

−0.1312 · 1013, 5.4723 · 1013
]

,

K(t∗2) =

[
0.0093 · 1013, −0.0487 · 1013

−0.0487 · 1013, 2.3017 · 1013
]

and the other terms are given in Tabs. 4 and 5.

ε δε {x0}1,1 {x0}2,1 s

0.015 0.339 7.8378 · 10−7 0.4899 · 10−7 0.1315
0.005 0.113 2.6126 · 10−7 0.1633 · 10−7 0.0146
0.002 0.045 1.0404 · 10−7 0.0650 · 10−7 0.0023
0.001 0.023 0.5318 · 10−7 0.0332 · 10−7 0.0006

Table 4. Expressions in Rε for α = 0.05, t∗1 = 1.99.

ε δε {x0}1,1 {x0}2,1 s

0.015 1.61 8.2413 · 10−7 0.5151 · 10−7 2.6750
0.005 0.537 2.7488 · 10−7 0.1718 · 10−7 0.2976
0.002 0.215 1.1005 · 10−7 0.0688 · 10−7 0.0477
0.001 0.107 0.5477 · 10−7 0.0342 · 10−7 0.0118

Table 5. Expressions in Rε for α = 0.01, t∗2 = 4.02.

All nonsensitiveness regions Rε are demonstrated in Figs. 3 and 4, where Fig. 3,
Fig. 4 correspond to the above mentioned results in Tab. 4 and Tab. 5, respectively.

In Figs. 3 and 4 we can see natural properties of the nonsensitiveness regions Rε for
the risk of the test:

• the lower given number ε, the lower Rε,

• the greater value of the parameter t, the lower Rε,

• the lower the value of the risk of the test α, the greater Rε.
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Figure 3. Nonsensitiveness regions Rε for α = 0.05 and t∗ = 1.99.
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Figure 4. Nonsensitiveness regions Rε for α = 0.01 and t∗ = 4.02.
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