Skip to main content
Log in

A New Version of the Cell Method of Determining the Suspension Viscosity

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The spherical cell method was used to describe the rotational motion of suspension particles with fixed centers of mass. This provided a more natural matching of the symmetry of hydrodynamical flows in the system to the shape of the cell. The question of choosing an optimal radius of the cell was considered. It was shown that, in the framework of the new approach, experimental data on the average viscosity of suspensions are reproduced with a high degree of accuracy up to the value of the specific volume of particles equal to 0.45.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Englewood Cliffs: Prentice-Hall, 1965. Translated under the title Gidrodinamika pri malykh chislakh Reinol'dsa, Moscow: Mir, 1976.

    Google Scholar 

  2. Batchelor, G.K. and Green, J.T., J. Fluid Mech., 1972, vol. 56, p. 401.

    Google Scholar 

  3. Jorquera, H. and Dahler, J.S., J. Chem. Phys., 1994, vol. 101, p. 1392.

    Google Scholar 

  4. Einstein, A., Ann. Phys., 1906, vol. 19, p. 289; vol. 34, p. 591.

    Google Scholar 

  5. Happel, J., J. Appl. Phys., 1957, vol. 28, p. 1288.

    Google Scholar 

  6. Chow, T.S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1993, vol. 48, p. 1977.

    Google Scholar 

  7. Saito, N., J. Phys. Soc. Jpn., 1952, vol. 7, p. 447.

    Google Scholar 

  8. Frenkel', Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Leningrad: Nauka, 1975.

    Google Scholar 

  9. Boon, J.P. and Yip, S., Molecular Hydrodynamics, New York: McGraw-Hill, 1980.

    Google Scholar 

  10. Hoover, W.G. and Ree, F.H., J. Chem. Phys., 1968, vol. 49, p. 3609; Pusey, P.N. and Van Megen, W., Nature, 1986, vol. 320, p. 340.

    Google Scholar 

  11. Van der Werff, J.C. and de Kruif, C.G., J. Rheol., 1989, vol. 33, p. 421.

    Google Scholar 

  12. Branca, C., Malomuzh, N.P., and Lokotosh, T., J. Mol. Liq., 2001, vol. 93, p. 139.

    Google Scholar 

  13. Malomuzh, N.P. and Pelishenko, S.B., Ukr. Fiz. Zh., 1990, vol. 35, no. 4, p. 577.

    Google Scholar 

  14. Lokotosh, T.V. and Malomuzh, N.P., Zh. Fiz. Khim., 1994, vol. 68, no. 6, p. 984.

    Google Scholar 

  15. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.

    Google Scholar 

  16. Lifshits, I.M., Grosberg, A.Yu., and Khokhlov, A.R., Usp. Fiz. Nauk, 1979, vol. 127, no. 3, p. 353.

    Google Scholar 

  17. De Gennes, P.G., Scaling Concepts in the Physics of Polymers, Ithaca: Cornell Univ. Press, 1979. Translated under the title Idei skeilinga v fizike polimerov, Moscow: Mir, 1982.

    Google Scholar 

  18. Debye, P. and Bueche, A.M., J. Chem. Phys., 1948, no. 16, p. 573.

  19. Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1986, 3rd ed.

    Google Scholar 

  20. Ubbelohde, A., Melting and Crystal Structure, Oxford: Clarendon, 1965. Translated under the title Plavlenie i kristallicheskaya struktura, Mosow: Mir, 1969.

    Google Scholar 

  21. Magazu, S., Maisano, G., Migliardo, P., et al., Res. Dev. Phys. Chem., 1999, no. 3, p. 361.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malomuzh, N.P., Orlov, E.V. A New Version of the Cell Method of Determining the Suspension Viscosity. Colloid Journal 64, 725–733 (2002). https://doi.org/10.1023/A:1021502306529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021502306529

Keywords

Navigation