Skip to main content
Log in

Application of DNA Microarrays in Pharmacogenomics and Toxicogenomics

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Many drugs or xenobiotics can induce specific or nonspecific cellular signal transduction events that activate various physiologic and pharmacologic responses including homeostasis, proliferation, differentiation, apoptosis, and necrosis. To minimize the insults caused by these xenobiotics, tissues and organs are equipped with protective mechanisms that either pump drugs out of the cells (e.g., the multidrug-resistant, mdr, family of proteins) or increase the level of detoxifying enzymes such as phase I and II drug-metabolizing enzymes (DMEs), after exposure to xenobiotics. This review discusses the molecular analysis of pharmaco- or toxicogenomic gene expression profiles following exposure to cancer chemotherapeutic and chemopreventive agents. We present the development of DNA microarray technology and its use in expression profiling of possible signal transduction events elicited by these compounds, and its potential future applications in drug discovery and development in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. S. Lander et al. Initial sequencing and analysis of the human genome. Nature 409:860–921 (2001).

    Google Scholar 

  2. J. C. Venter et al. The sequence of the human genome. Science 291:1304–1351 (2001).

    Google Scholar 

  3. F. Antequera and A. Bird. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90:11995–11999 (1993).

    Google Scholar 

  4. D. Zhuo, W. D. Zhao, F. A. Wright, H. Y. Yang, J. P. Wang, R. Sears, T. Baer, D. H. Kwon, D. Gordon, S. Gibbs, D. Dai, Q. Yang, J. Spitzner, R. Krahe, D. Stredney, A. Stutz, and B. Yuan. Assembly, annotation, and integration of UNIGENE clusters into the human genome draft. Genome Res. 11:904–918 (2001).

    Google Scholar 

  5. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470 (1995).

    Google Scholar 

  6. R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart. High density synthetic oligonucleotide arrays. Nature Genet. 21: 20–24 (1999).

    Google Scholar 

  7. J. G. Hacia and F. S. Collins. Mutational analysis using oligonucleotide microarrays. J Med. Genet. 36:730–736 (1999).

    Google Scholar 

  8. C. A. Afshari, E. F. Nuwaysir, and J. C. Barrett. Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Res. 59: 4759–4760 (1999).

    Google Scholar 

  9. K. Kudoh, M. Ramanna, R. Ravatn, A. G. Elkahloun, M. L. Bittner, P. S. Meltzer, J. M. Trent, W. S. Dalton, and K. V. Chin. Monitoring the expression profiles of doxorubicin-induced and doxorubicin-resistant cancer cells by cDNA microarray. Cancer Res. 60:4161–4166 (2000).

    Google Scholar 

  10. D. W. Voehringer, D. L. Hirschberg, J. Xiao, Q. Lu, M. Roederer, C. B. Lock, L. A. Herzenberg, and L. Steinman. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl. Acad. Sci. USA 97:2680–2685 (2000).

    Google Scholar 

  11. X. Zheng, R. Ravatn, Y. Lin, W. Shih, A. Rabson, R. Strair, E. Huberman, A. Conney, and K.-V. Chin. Analysis of the mechanisms of TPA induced differentiation in HL-60 cells by expression profiling with DNA microarray. Nucleic Acid Res. 30:4489–4499 (2002).

    Google Scholar 

  12. A. N. Kong, R. Yu, V. Hebbar, C. Chen, E. Owuor, R. Hu, R. Ee, and S. Mandlekar. Signal transduction events elicited by cancer prevention compounds. Mutat. Res. 480-481:231–241 (2001).

    Google Scholar 

  13. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95:14863–14868 (1998).

    Google Scholar 

  14. T. H. Rushmore and A.-N. T. Kong. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr. Drug Metab. 3:481–490 (2002).

    Google Scholar 

  15. S. J. Duthie and M. H. Grant. The toxicity of menadione and mitozantrone in human liver-derived Hep G2 hepatoma cells. Biochem. Pharmacol. 38:1247–1255 (1989).

    Google Scholar 

  16. Y. Mao, S. D. Desai, C. Y. Ting, J. Hwang, and L. F. Liu. 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J. Biol, Chem. 276:40652–40658 (2001).

    Google Scholar 

  17. L. J. van 't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536 (2002).

    Google Scholar 

  18. E. J. Yeoh, M. E. Ross, S. A. Shurtleff, W. K. Williams, D. Patel, R. Mahfouz, F. G. Behm, S. C. Raimondi, M. V. Relling, A. Patel, C. Cheng, D. Campana, D. Wilkins, X. Zhou, J. Li, H. Liu, C. H. Pui, W. E. Evans, C. Naeve, L. Wong, and J. R. Downing. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143 (2002).

    Google Scholar 

  19. A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I. Fisher, R. D. Gascoyne, H. K. Muller-Hermelink, E. B. Smeland, J. M. Giltnane, E. M. Hurt, H. Zhao, L. Averett, L. Yang, W. H. Wilson, E. S. Jaffe, R. Simon, R. D. Klausner, J. Powell, P. L. Duffey, D. L. Longo, T. C. Greiner, D. D. Weisenburger, W. G. Sanger, B. J. Dave, J. C. Lynch, J. Vose, J. O. Armitage, E. Montserrat, A. Lopez-Guillermo, T. M. Grogan, T. P. Miller, M. LeBlanc, G. Ott, S. Kvaloy, J. Delabie, H. Holte, P. Krajci, T. Stokke, and L. M. Staudt. The use of molecular profiling to predict survival after chemotherapy for diffuse large-Bcell lymphoma. N. Engl. J. Med. 346:1937–1947 (2002).

    Google Scholar 

  20. D.G. Beer, S. L. Kardia, C. C. Huang, T. L. Giordano, A. M. Levin, D. E. Misek, L. Lin, G. Chen, T. G. Gharib, D.G. Thomas, M. L.Lizyness, R. Kuick, S. Hayasaka, J. M. Taylor, M. D. Iannettoni, M. B. Orringer, and S. Hanash. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Med. (epub) doi:10.1038/nm733 (2002).

  21. R. Yu, C. Chen, Y. Y. Mo, V. Hebbar, E. D. Owuor, T. H. Tan, and A. N. Kong. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 275: 39907–39913 (2000).

    Google Scholar 

  22. H. C. Huang, T. Nguyen, and C. B. Pickett. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. USA 97:12475–12480 (2000).

    Google Scholar 

  23. J. M. Lee, J. M. Hanson, W. A. Chu, and J. A. Johnson. Phosphatidylinositol 3-kinase, not extracellular signal-regulated kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells. J. Biol. Chem. 276:20011–20016 (2001).

    Google Scholar 

  24. J. Y. Chan, X. L. Han, and Y. W. Kan. Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. Proc. Natl. Acad. Sci. USA 90:11371–11375 (1993).

    Google Scholar 

  25. R. Venugopal and A. K. Jaiswal. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc. Natl. Acad. Sci. USA 93:14960–14965 (1996).

    Google Scholar 

  26. J. Y. Chan, X. L. Han, and Y. W. Kan. Isolation of cDNA encoding the human NF-E2 protein. Proc. Natl. Acad. Sci. USA 90:11366–11370 (1993).

    Google Scholar 

  27. M. G. Marini, K. Chan, L. Casula, Y. W. Kan, A. Cao, and P. Moi. hMAF, a small human transcription factor that heterodimerizes specifically with Nrf1 and Nrf2. J. Biol. Chem. 272:16490–16497 (1997).

    Google Scholar 

  28. A. N. Kong, E. Owuor, R. Yu, V. Hebbar, C. Chen, R. Hu, and S. Mandlekar. Induction of xenobiotic enzymes by the map kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab. Rev. 33:255–271 (2001).

    Google Scholar 

  29. K. Itoh, N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J. D. Engel, and M. Yamamoto. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13:76–86 (1999).

    Google Scholar 

  30. R. Hu, C. Chen, V. Hebbar, and A.-N. T. Kong. cDNA microarray analysis of sulforaphane and (-)-epigallocatechin-3-gallateinduced gene expression profiles. AAPS Pharm. Sci. Suppl. 3: 2333 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, KV., Kong, AN.T. Application of DNA Microarrays in Pharmacogenomics and Toxicogenomics. Pharm Res 19, 1773–1778 (2002). https://doi.org/10.1023/A:1021425004264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021425004264

Navigation