Skip to main content
Log in

The Influence of Hydrochemistry on Methane Emissions from Two Contrasting Northern Wetlands

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Methane emissions from an acidic bog and a forested swamp in north Wales, U.K., were measured over a 12 month period. Along with the emission, hydrochemistry (DOC, SO4 2- and NO3 -) and physical factors (temperature, water table level) were determined. At the bog site, the methane emission ranged from 0.15 mg m-2 day-1 to 6.39 mg m-2 day-1, having two peaks in spring and late summer. In contrast, high emission was observed in October (38.95 mg m-2 day-1) and November (75.37 mg m-2 day-1)at the swamp site, which is concurrent with leaf litter production and high DOC concentrations. During the remaining months, the flux varied between –1.33 mg m-2 day-1 and 3.05 mg m-2 day-1. Correlation analyses showed that the methane emission from the acidic bog had a positive correlation with soil temperature, and negative correlations with sulfate and nitrate concentrations in the pore-water. However, a correlation with water table level was absent. Methane emission from the swamp exhibited a negative correlation with sulfate concentration. Our results confirm that methane emissions vary substantially between different types of wetlands, and suggest that under certain conditions, hydrochemistry may be a more critical controlling variable for methane emissions than temperature and water table level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayers, G. P., Peng, L. C., Fook, L. S., Kong, C. W., Gillett, R. W. and Manins, P. C.: 2000, Tellus B 52, 60–73.

    Article  Google Scholar 

  • Clymo, R. S.: 1983, ‘Peat’, in D. W. Goodall (ed.), Ecosystems of the World, Vol. 4A, Mires: Swamp, Bog, Fen, and Moor, Elsevier, Amsterdam, pp. 159–224.

    Google Scholar 

  • Coûteaux, M.-M., Bottner, P. and Berg, B.: 1995, Trends Ecol. Evol. 10, 63–66.

    Article  Google Scholar 

  • Crill, P. M., Harriss, R. C. and Bartlett, K. B.: 1991, ‘Methane Flux from Terrestrial Wetland Environments’, in J. E. Roger and W. B. Whitman (eds), Microbial Production and Consumption of Greenhouse Gases, American Society for Microbiology, Washington, D.C., pp. 91–110.

    Google Scholar 

  • Dise, N. B., Gorham, E. and Verry, E. S.: 1993, J. Geophys. Res.-Atmos. 98, 10583–10594.

    Google Scholar 

  • Freeman, C., Hudson, J., Lock, M. A., Reynolds, B. and Swanson, C.: 1994, Soil Biol. Biochem. 26, 439–1442.

    Article  Google Scholar 

  • Freeman, C., Liska, G., Ostle, N. J., Lock, M. A., Reynolds, B. and Hudson, J.: 1996, Plant Soil 180, 121–127.

    Article  CAS  Google Scholar 

  • Freeman, C., Lock, M. A. and Reynolds, B.: 1993, Biogeochemistry 19, 31–60.

    Article  Google Scholar 

  • Glenn, S., Heyes, A. and Moore, T.: 1993, Global Biogeochem. Cy. 7, 247–257.

    CAS  Google Scholar 

  • Happell, J. D. and Chanton, J. P.: 1993, Global Biogeochem. Cy. 7, 475–490.

    CAS  Google Scholar 

  • Hughes, S., Dowrick, D. J., Freeman, C., Lock, M. A., Reynolds, B. R. and Hudson, J. A.: 1999, Environ. Sci. Technol. 33, 362–365.

    Article  CAS  Google Scholar 

  • Ingram, H. A. P.: 1983, ‘Hydrology’, in D. W. Goodall (ed.), Ecosystems of the World, Vol. 4A, Mires: Swamp, Bog, Fen, and Moor, Elsevier, Amsterdam, pp. 67–158.

    Google Scholar 

  • Kang, H. and Freeman, C.: 1999, Soil Biol. Biochem. 31, 449–454.

    Article  CAS  Google Scholar 

  • Mathew, E. and Fung, I.: 1987, Global Biogeochem. Cy. 1, 61–86.

    Google Scholar 

  • Martikainen, P. J., Nykänen, H., Alm, J. and Silvola, J.: 1995, Plant Soil 168, 571–577.

    Article  Google Scholar 

  • Moore, T. R. and Knowles, R.: 1990, Biogeochemistry 11, 45–61.

    Article  Google Scholar 

  • Oremland, R. S.: 1988, ‘Biogeochemistry of Methanogenic Bacteria’ in A. J. B. Zhender (ed.), Biology of Anaerobic Micro-organisms, Wiley, New York, pp. 641–705.

    Google Scholar 

  • Pulliam, W. M.: 1993, Ecol. Monogr. 63, 29–53.

    Article  Google Scholar 

  • Rasmussen, R. A. and Khalil, M. A. K.: 1984, J. Geophys. Res.-Atmos. 89, 11599–11605.

    Article  CAS  Google Scholar 

  • Rejmankova, E. and Post, R. A.: 1996, Biogeochemistry 34, 57–70.

    Article  CAS  Google Scholar 

  • Rodhe, H.: 1990, Science 248, 1217–1219.

    Article  CAS  Google Scholar 

  • Schipper, L. A. and Reddy, K. R.: 1994, Soil Sci. Soc. Am. J. 58, 1270–1275.

    Article  CAS  Google Scholar 

  • Sugimoto, A. and Fujita. N.: 1997, Tellus B 49, 382–392.

    Article  Google Scholar 

  • Wilson, J. O., Crill, P. M., Bartlett, K. B., Sebacher, D. I., Harriss, R. C. and Sass, R. L.: 1989, Biogeochemistry 8, 55–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H., Freeman, C. The Influence of Hydrochemistry on Methane Emissions from Two Contrasting Northern Wetlands. Water, Air, & Soil Pollution 141, 263–272 (2002). https://doi.org/10.1023/A:1021324326859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021324326859

Navigation