Skip to main content
Log in

Quantum Evolution in Fluctuating Backgrounds: Nonideal Clocks and Foam-Like Spacetimes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

I characterize good clocks, which are naturally subject to fluctuations, in statistical terms, obtain the master equation that governs the evolution of quantum systems according to these clocks, and find its general solution. This master equation is diffusive and produces loss of coherence. Moreover, real clocks can be described in terms of effective interactions that are nonlocal in time. Alternatively, they can be modeled by an effective thermal bath coupled to the system. I also study some aspects concerning the evolution of quantum low-energy fields in a foamlike spacetime, with involved topology at the Planck scale but with a smooth metric structure at large length scales. This foamlike structure of spacetime may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Spacetime foam introduces nonlocal interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. These evolution laws are similar to those for quantum mechanical systems evolving according to good nonideal clocks, although the underlying Hamiltonian structure in this case establishes some differences among both scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aharanov, Y., Oppenheim, J., Popescu, S., Reznik, B., and Unruh, W. G. (1988). Measurement of time of arrival in quantum mechanics, Physical Review A 57, 4130.

    Google Scholar 

  • Amelino-Camelia, G., John Ellis, N. E., Mavromatos, D. V., Nanopoulos, and Subir Sarkar. (1998). Tests of quantum gravity from observations of gamma-ray bursts. Nature (London) 393, 763.

    Google Scholar 

  • Banks, T., Susskind, L., and Peskin, M. E. (1984). Difficulties for the evolution of pure states into mixed states, Nuclear Physics B 244, 125.

    Google Scholar 

  • Callen, H. B. and Welton, T. A. (1951). Irreversibility and Generalized Noise, Physical Review 83, 34.

    Google Scholar 

  • Carlip, S. (1998). Dominant Topologies in Euclidean Quantum Gravity, Classical Quantum Gravity 15, 2629.

    Google Scholar 

  • Cooper, F., Habib, S., Kluger, Y., and Mottola, E. (1997). Nonequilibrium dynamics of symmetry breaking in $\lambdan\Phi4 $ theory, Physical Review D 55, 6471.

    Google Scholar 

  • DeWitt, B. S. (1984). In Relativity, Groups, and Topology II, B. S. DeWitt and R. Stora, eds., North-Holland, Amsterdam.

    Google Scholar 

  • Diósi, L. (1987). A universal master equation for the gravitational violation of the quantum mechanics. Physics Letters A 120, 377.

    Google Scholar 

  • Egusquiza, I. L., Garay, L. J., and Raya, J. M. (1999). Physical Review A 59, 3236.

    Google Scholar 

  • Ellis, J. et al. (1984). Nuclear Physics B 241, 381.

    Google Scholar 

  • Feynman, R. P. and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals, McGraw-Hill, New York.

    Google Scholar 

  • Feynman, R. P. and Vernon, F. L. (1963). Annals of Physics (New York) 24, 118.

    Google Scholar 

  • Garay, L. J. (1995). International Journal of Modern Physics A 10, 145.

    Google Scholar 

  • Garay, L. J. (1998a). Physical Review Letters 80, 2508.

    Google Scholar 

  • Garay, L. J. (1998). Physical Review D 58, 124015.

    Google Scholar 

  • Garay, L. J. (1999). Internation Journal of Modern Physics A 14, 4079.

    Google Scholar 

  • Gardiner, C. W. (1985). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, Berlin.

    Google Scholar 

  • Gardiner, C. W. (1991). Quantum Noise, Springer, Berlin.

    Google Scholar 

  • Giulini, D. et al. (1996). Decoherence and the Appearance of the Classical World in Quantum Theory, Springer, Berlin.

    Google Scholar 

  • Gour, G. and Sriramkumar, L. (1999). Foundaion of Physics 29, 1917.

    Google Scholar 

  • Hartle, J. B. (1988). Physical Review D 38, 2985.

    Google Scholar 

  • Hawking, S. W. (1976). Physical Review D 14, 2460.

    Google Scholar 

  • Hawking, S. W. (1978). Nuclear Physics B 144, 349.

    Google Scholar 

  • Hawking, S. W. (1982). Communications in Mathematical Physics 87, 395.

    Google Scholar 

  • Hawking, S. W. (1996). Physical Review D 53, 3099.

    Google Scholar 

  • Hawking, S. W., Page, D. N., and Pope, C. N. (1979) Physics Letters B 86, 175.

    Google Scholar 

  • Hawking, S. W., Page, D. N., and Pope, C. N. (1980). Nuclear Physics B 170, 283.

    Google Scholar 

  • Hawking, S.W. and Ross, S. F. (1997). Loss of quantum coherence through scattering off virtual black holes, Physical Review D 56, 6403.

    Google Scholar 

  • Hu, B. L. (1999). Stochastic gravity, International Journal of Theoretical Physics 38, 2987.

    Google Scholar 

  • Huang, K. (1987). Statistical Mechanics, Wiley, New York.

    Google Scholar 

  • Itzykson, C. and Zuber, J. B. (1985). Quantum Field Theory, McGraw-Hill, Singapore.

    Google Scholar 

  • Mandel, L. and Wolf, E. (1995). Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Mensky, M. B. (1992). The action uncertainty principle and quantum gravity, Physics Letters A 162, 219.

    Google Scholar 

  • Misner, C. W. (1960). Wormhole Initial Conditions, Physical Review 118, 1110.

    Google Scholar 

  • Padmanabhan, T. (1999). Event horizon of a Schwarzschild black hole: Magnifying glass of Planck length physics, Physical Review D 59 124012.

    Google Scholar 

  • Page, D. N. and Wootters, W. K. (1983). Evolution without evolution: Dynamics described by stationary observables, Physical Review D 27, 2885.

    Google Scholar 

  • Percival, I. C. (1995). Quantum space-time fluctuations and primary state diffusion, Proceedings of the Royal Society of London, Series A 451, 503.

    Google Scholar 

  • Peres, A. (1980). Measurement of time by quantum clocks, American Journal of Physics 48, 552.

    Google Scholar 

  • Reed, M. and Simon, B. (1972). Methods of Modern Mathematical Physics I. Functional Analysis, Academic Press, New York.

    Google Scholar 

  • Riemann, B. (1873). On the hypotheses which lie at the bases of geometry, Nature 8, 14 Translated into English by W. K. Clifford.

    Google Scholar 

  • Salecker, H. and Wigner, E. (1958). Quantum limitations of the measurement of space-time distances, Physical Review 109, 571.

    Google Scholar 

  • Unruh, W. G. and Wald, R. M. (1989). Time and the interpretation of canonical quantum gravity, Physical Review D 40, 2598.

    Google Scholar 

  • Unruh, W. G. and Wald, R. M. (1995). On evolution laws taking pure states to mixed states in quantum field theory, Physical Review D 52, 2176.

    Google Scholar 

  • Van Kampen, N. G. (1981). Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam.

    Google Scholar 

  • Weyl, H. (1949). Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton (1949).

    Google Scholar 

  • Wheeler, J. A. (1957). On the nature of quantum geometrodynamics. Annals of Physics (New York) 2, 604 (1957).

    Google Scholar 

  • Wigner, E. (1957). Relativistic invariance and quantum phenomena. Reviews of Modern Physics 29, 255.

    Google Scholar 

  • Zurek, W. H. (1981). Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Physical Review D 24, 1516.

    Google Scholar 

  • Zurek, W. H. (1982). Environment induced superselection rules, Physical Review D 26, 1862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garay, L.J. Quantum Evolution in Fluctuating Backgrounds: Nonideal Clocks and Foam-Like Spacetimes. International Journal of Theoretical Physics 41, 2047–2072 (2002). https://doi.org/10.1023/A:1021120724078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021120724078

Navigation