Skip to main content
Log in

Microwave flash synthesis of iron and magnetite particles by disproportionation of ferrous alcoholic solutions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports the microwave-hydrothermal treatment of alcoholic solutions of ferrous chloride (FeCl2) and sodium ethoxide (EtONa) solutions with a microwave autoclave designed by the authors (the RAMO system). Depending on the initial concentrations, hematite (α-Fe2O3), spinel phase (Fe3 − x O4) or iron-magnetite (Fe0-Fe3O4) nanocomposites are obtained with a lower grain size compared to conventional composites. Indeed, X-ray diffraction (XRD) analysis reveals grain sizes close to 20 nm for magnetite and 60 nm for metallic iron. However, the amount of metal is smaller (close to 11%). Furthermore, these particles are inert in the ambient atmosphere. Consequently, the RAMO (French acronym of Reacteur Autoclave MicroOnde) system appears to provide an efficient source of energy in rapidly producing inert powders of iron, magnetite and iron-magnetite composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stuerga and P. Gaillard, J. Microwave Power and Electromagnetic Energy 31 (1996) 87.

    Google Scholar 

  2. D. Stuerga, K. Gonon and M. Lallemant, Tetrahedron 49 (1993) 6229.

    Google Scholar 

  3. D. M. P. Mingos and D. R. Baghurst, Chem. Soc. Rev. 20 (1991) 1

    Google Scholar 

  4. D. R. Baghurst and M. P. Mingos, J. Chem. Soc. (1988) 829.

  5. S. Komarneni, Q. H. Li and R. Roy, J. Mater. Chem. 4 (1994) 1903.

    Google Scholar 

  6. I. Girnus, M. Pohl, J. Richter-mendau, M. Schneider, M. Noacq, D. Venzke and J. Caro, Adv. Mater. 7 (1995) 711.

    Google Scholar 

  7. Y. T. Moon, D. K. Kim and C. H. Kim, J. Amer. Ceram. Soc. 78 (1995) 1103.

    Google Scholar 

  8. S. Komarneni, R. Pidugu, Q. H. Li and R. Roy, J. Mater. Res. 10 (1995) 1687.

    Google Scholar 

  9. R. Rodriguez and J. Gomez-morales, J. Cryst. Growth 169 (1996) 339.

    Google Scholar 

  10. Y. Ma, E. Vileno, S. L. Suib and P. K. Dutta, Chem. Mater. 9 (1997) 3023.

    Google Scholar 

  11. S. Komarneni, R. K. Rajha and H. Katsuki, Mat. Chem. Phys. 61 (1999) 50.

    Google Scholar 

  12. G. J. Choi, H. S. Kim and Y. S. Cho, Mat. Lett. 41 (1999) 122.

    Google Scholar 

  13. Y. Wada, H. Kuramoto, T. Sakata, H. Mori, T. Sumida, T. Kitamura and S. Yanagida, Chem. Lett. 7 (1999) 607.

    Google Scholar 

  14. S. Komarneni, M. C. D'arrigo, C. Leonelli, G. C. Pellacani and H. Katsuki, J. Amer. Ceram. Soc. 81 (1998) 3041.

    Google Scholar 

  15. G. Wang, G. Whittaker, A. Harrisson and L. Song, Mat. Res. Bull. 33 (1998) 1571.

    Google Scholar 

  16. D. Daichuan, H. Pinjie and D. Shushan, Mat. Res. Bull. 30 (1995) 531.

    Google Scholar 

  17. D. Daichuan, H. Pinjie and D. Shushan, Mat. Res. Bull. 30 (1995) 537.

    Google Scholar 

  18. Q. Li and Y. Wei,Mat. Res. Bull. 33 (1998) 779.

    Google Scholar 

  19. P. Rigneau, K. Bellon, I. Zahreddine and D. Stuerga, The European Physical Journal, Applied Physics 7 (1999) 41.

    Google Scholar 

  20. F. J. Shipko and D. L. Douglas, J. Phys. Chem. 60 (1992) 1519.

    Google Scholar 

  21. G. N. Schrauzer and T. D. Guth, J. Amer. Chem. Soc. 98 (1976) 3508.

    Google Scholar 

  22. S. Lakamp, A. Malats i riera, G. Pourroy, P. Poix, J. L. Dormann and J. M. Greneche, Eur. J. Solid. State Inorg. Chem. 32 (1995) 159.

    Google Scholar 

  23. F. Tihay, A. C. Roger, A. Kiennemann and G. Pourroy, Catalysis Today 58 (2000) 263.

    Google Scholar 

  24. R. R. Bowman, IEEE Trans. MTT 1 (1976) 43.

    Google Scholar 

  25. T. C. Rozzell, C. C. Johnson, C. H. Dumey, J. L. Lords and R. G. Olsen, J. Microwave Power 9 (1994) 241.

    Google Scholar 

  26. J. I. Langford, in Proceedings of the International Conference Accuracy in Powder Diffraction II, NIST,Gaithersburg, MD, May26–29, 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillot, T., Aymes, D., Stuerga, D. et al. Microwave flash synthesis of iron and magnetite particles by disproportionation of ferrous alcoholic solutions. Journal of Materials Science 37, 5153–5158 (2002). https://doi.org/10.1023/A:1021028809382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021028809382

Keywords

Navigation