Skip to main content
Log in

Transdermal Drug Delivery by Jet Injectors: Energetics of Jet Formation and Penetration

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Pressure-driven jets have been used for intradermal delivery of a variety of drugs. Despite their introduction into clinical medicine, variability and occasional bruising have limited their widespread acceptance. Although numerous clinical studies of jet injectors have been reported in the literature, surprisingly little is known about the mechanisms of jet penetration into the skin. In this article, we report results of our studies aimed at determining the dependence of drug delivery on jet velocity and diameter. These studies were performed using two experimental models, porcine skin and human skin. Our rationale for using two models was to explore the possibility of using porcine skin as a model for human skin.

Methods. Dermal penetration of jets possessing a range of diameters from 76 μm to 559 μm and a range of velocities from 80 m/s to 190 m/s was studied into human and porcine skin. Penetration was quantified using radiolabeled mannitol. Pressure and velocity of the jets were measured using a calibrated pressure transducer and high-speed photography.

Results. Penetration of the jet into the skin was determined by two main parameters, jet diameter and average jet velocity. Substantial variation in jet penetration into porcine skin was observed for skin pieces obtained from different anatomic locations. For porcine skin, a parabolic dependence of jet delivery on velocity and diameter was observed. The threshold velocity is suggested to be between 80 and 100 m/s for a jet diameter of 152 μm. Above the threshold velocity, the delivery increased for velocities up to 150 m/s, after which delivery decreased with increasing velocity. At a constant velocity of 150 m/s, jet delivery exhibited a maximum at a diameter of 152 μm. Results obtained with human skin were qualitatively similar but quantitatively different. The threshold velocity for jet penetration into human skin was comparable with that in porcine skin; however, the maxima observed in jet delivery into porcine skin with respect to jet velocity was not apparent for human skin over the range of velocities explored.

Conclusions. These studies offer a quantitative analysis of jet penetration into the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. H. J. Figge and D. J. Barnett. Anatomic evaluation of a jet injection instrument designed to minimize pain and inconvenience of parenteral therapy. Am.Practicioner 3:197-206 (1948).

    Google Scholar 

  2. U. Schneider, R. Birnbacher, and E. Schober. Painfulness of needle and jet injection in children with diabetes mellitus. Eur.J.Pediatr. 153:409-410 (1994).

    PubMed  Google Scholar 

  3. G. Wijsmuller and D. E. Snider Jr. Skin testing: A comparison of the jet injector with the mantoux method. Am.Rev.Respir.Dis. 112:789-798 (1975).

    PubMed  Google Scholar 

  4. B. G. Weniger. (www.cdc.gov/nip/dev/JetinjeBib.pdf, 2000), vol. 2001.

  5. F. S. Perkin. Jet Injection of insulin in treatment of diabetes mellitus. Proc.Diabetes Assoc. 10:185-199 (1950).

    Google Scholar 

  6. A. Consoli, F. Capani, G. La Nava, A. Nicolucci, G. P. Prosperini, G. Santeusanio, and S. Sensi. Administration of semisynthetic human insulin by a spray injector. Bollettino-Societa Italiana Biologia Sperimentale 60:1859-1862 (1984).

    Google Scholar 

  7. J. Halle, J. Lambert, I. Lindmayer, K. Menassa, F. Coutu, A. Moghrabi, L. Legendre, C. Legault, and G. Lalumiere. Twicedaily mixed regular and NPH insulin injections with new jet injector versus conventional syringes: Pharmacokinetics of insulin absorption. Diabetes Care 9:279-282 (1986).

    PubMed  Google Scholar 

  8. G. Kerum, M. Profozic, G. Skrabalo, and Z. Skrabalo. Blood glucose and free insulin levels after the administration of insulin by conventional syringe or jet injector in insulin treated type 2 diabetics. Horm.Metab.Res. 19:422-425 (1987).

    PubMed  Google Scholar 

  9. F. K. Bauer, B. Cassen, E. Youtcheff, and L. Shoop. Jet Injection of Radioisotopes-a clinical study comparing needle and jet injection of I131, K42, and Na24. Am.J.Med.Sci. 225:374-378 (1953).

    PubMed  Google Scholar 

  10. L. Jovanovic-Peterson, S. Sparks, J. P. Palmer, and C. M. Peterson. Jet injected insulin is associated with decreased antibody production and postprandial glucose variability when compared with needle-injected insulin in gestational diabetic women. Diabetes Care 16:1479-1484 (1993).

    PubMed  Google Scholar 

  11. R. M. Seyam, L. R. Begin, L. M. Tu, S. B. Dion, S. L. Merlin, and G. B. Brock. Evalution of a no-needle penile injector: A preliminary study evaluating tissue penetration and its hemodynamic consequences in the rat. Urology 50:994-998 (1997).

    PubMed  Google Scholar 

  12. N. Inoue, D. Kobayashi, M. Kimura, M. Toyama, I. Sugawara, S. Itoyama, M. Ogihara, K. Sugibayashi, and Y. Morimoto. Fundamental investigation of a novel drug delivery system, a transdermal delivery system with jet injection. Int.J.Pharmaceutics 137:75-84 (1996).

    Google Scholar 

  13. M. L. Cohn, R. A. Hingson, J. V. Narduzzi, and J. M. Seddon. Clinical experience with jet insulin injection in diabetes mellitus therapy: A clue to the pathogenesis of lipodystrophy. Ala.J.Med.Sci. 11:265-272 (1974).

    PubMed  Google Scholar 

  14. A. K. ElGeneidy, A. A. Bloom, J. H. Skerman, R. E. Stallard. Tissue reaction to jet injection. Oral Surg.Oral Med.Oral Pathol. 38:501-511 (1974).

    PubMed  Google Scholar 

  15. C. R. Bennett, R. D. Mundell, and L. M. Monheim. Studies on tissue penetration characteristics produced by jet injection. J.Am.Dental Assoc. 83:625-629 (1971).

    Google Scholar 

  16. P. Bareille, M. MacSwiney, A. Albanese, C. D. Vile, and R. Stanhope. Growth hormone treatment without a needle using the Preci-Jet 50 transjector. Arch.Dis.Child. 76:65-67 (1997).

    PubMed  Google Scholar 

  17. G. E. Theintz and P. C. Sizonenko. Risks of jet injection of insulin in children. Eur.J.Pediatr. 150:554-556 (1991).

    PubMed  Google Scholar 

  18. I. Lindmayer, K. Menassa, J. Lambert, A. Moghrabi, L. Legendre, C. Legault, and M. Letendre. J. Halle. Development of new jet injector for insulin therapy. Diabetes Care 9:294-297 (1986).

    PubMed  Google Scholar 

  19. A. H. Kutscher, G. A. Hyman, E. V. Zegarelli, J. Dekis, and J. D. Piro. A comparative evalution of the jet injection technique (hypospray) and the hypodermic needle for the parenteral administration of drugs: A controlled study. Am.J.Med.Sci. 244:418-420 (1962).

    PubMed  Google Scholar 

  20. J. P. Price, D. F. Kruger, and L. D. Saravolatz. F. W. Whitehouse. Evaluation of the jet injector as a potential source of infection. Am.J.Infect.Control 17:258-263 (1989).

    PubMed  Google Scholar 

  21. K. Sugibayashi, M. Kagino, S. Numajiri, N. Inoue, D. Kobayashi, M. Kimura, M. Yamaguciii, and Y. Morimoto. Synergistic effects of iontophoresis and jet injector pretreatment on the in-vitro skin permeation of diclofenac and angiotensin. J.Pharm.Pharmacol. 52:1179-1186 (2000).

    PubMed  Google Scholar 

  22. T. K. Das Gupta, S. G. Ronan, C. W. Beattie, A. Shilkaitis, and M. S. J. Amoss. Comparative histopathology of porcine and human cutaneous melanoma. Pediatr.Dermatol. 6:289-299 (1989).

    PubMed  Google Scholar 

  23. L. W. Weber. The penetration of 2,3,7,8-tetrachlorodibenzo-pdioxin into viable and non-viable porcine in vitro. Toxicology 84:125-140 (1993).

    PubMed  Google Scholar 

  24. U. Wollina, U. Berger, H. Stolle, H. Schubert, and M. Zieger., D. Schumann. Tissue expansion in pig skin-a histochemical approach. Anat.Histol.Embryol. 21:101-111 (1992).

    PubMed  Google Scholar 

  25. D. Marro, R. H. Guy, and M. B. Delgado-Charro. Characterization of the iontophoretic permselectivity properties of human and pig skin. J.Control.Release 70:213-217 (2001).

    PubMed  Google Scholar 

  26. W. Meyer. Comments on the suitability of swine skin as a biological model for human skin. Hautarzt 47:178-182 (1996).

    PubMed  Google Scholar 

  27. D. L. P. D. Bremseth and F. M. D. Pass. Delivery of insulin by jet injection: Recent observations. Diabetes Technol.Ther. 3:225-232 (2001).

    PubMed  Google Scholar 

  28. J. C. Barbenel and J. H. Evans. The Time-Dependent Mechanical Properties of Skin. J.Invest.Dermatol. 69:318-320 (1977).

    PubMed  Google Scholar 

  29. M. S. Christensen, C. W. Hargens III, S. Nacht, and E. H. Gans. Viscoelastic properties of intact human skin: Instrumentation, hydration effects, and the contribution of the stratum corneum. J.Invest.Dermatol. 69:282-286 (1977).

    PubMed  Google Scholar 

  30. J. Ankersen, A. E. Birkbeck, R. D. Thomson, and P. Vanezis. Puncture resistance and tensile strength of skin stimulants. Proc.Inst.Mech.Eng.Part H-J.Eng.Med. 213:493-501 (1999).

    Google Scholar 

  31. B. P. Pereira, P. W. Lucas, and T. Swee-Hin. Ranking the fracture toughness of thin mammalian soft tissues using the scissors cutting test. J.Biomech. 30:91-94 (1997).

    PubMed  Google Scholar 

  32. D. J. Sheskin. In: T. Pletsche (ed.) Handbook of Parametric and Nonparametric Statistical Procedures, pp. 226-331, CRC Press, Boca Raton, Florida, 1997.

    Google Scholar 

  33. D. Freedman, R. Pisani, and R. Purves. In: Statistics, pp. 437-461. W. W. Norton & Company Inc., New York, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, J., Mitragotri, S. Transdermal Drug Delivery by Jet Injectors: Energetics of Jet Formation and Penetration. Pharm Res 19, 1673–1679 (2002). https://doi.org/10.1023/A:1020753329492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020753329492

Navigation