Skip to main content
Log in

Preparation and Entrapment of Fluorescently Labeled Proteins for the Development of Reagentless Optical Biosensors

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new class of reagentless optical biosensors are emerging based on the use of engineered proteins that are site-selectively labelled with a fluorescent reporter group. Such sensors can operate either by direct interaction of the analyte with the bound probe, or by generating a fluorescence response to an analyte induced conformational change in the protein. In this review, the preparation, characterization and use of fluorescently labelled proteins for the development of reagentless optical biosensors is described. Recent work involving the rational design of fluorescent protein biosensors, and efforts at characterizing the origins of responses from these systems is highlighted. An overview of the recent and potential future trends in this area is also given. Finally, methods of immobilizing such biomolecules for the development of reuseable sensors are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Janata, M. Josowicz, P. Vanysek, and D. M. DeVaney (1998) Anal. Chem. 70, 179R–208R.

    Google Scholar 

  2. A. J. Cunningham (1998) Introduction to Bioanalytical Sensors, John Wiley and Sons, New York.

    Google Scholar 

  3. G. E. Boisde and A. Harmer (1996) Chemical and Biochemical Sensing with Optical Fibers and Waveguides, Artech House, Norwood.

    Google Scholar 

  4. R. Freitag (1996) in R. Freitag (Ed.), Biosensors and Analytical Biotechnology, Academic Press, San Diego, pp. 99–127.

    Google Scholar 

  5. E. A. H. Hall, J. J. Gooding, and C. E. Hall (1995) Mikrochim. Acta 121, 119–145.

    Google Scholar 

  6. L. Regan (1995) Trends Biochem. Sci. 20, 280–285.

    Google Scholar 

  7. U. J. Krull, J. D. Brennan, R. S. Brown, S. Hosein, B. D. Hougham, and E. T. Vandenburg (1990) Analyst 115, 147–153.

    Google Scholar 

  8. K. A. Guiliano, and D. L. Taylor (1998) Trends Biotechnol. 16, 135–140.

    Google Scholar 

  9. M. Thompson and U. J. Krull (1991) Anal. Chem. 63, 393A–405A.

    Google Scholar 

  10. P. Fabry and E. Siebert (1997) in P. J. Gellings and H. J. M. Bouwmeester (Eds.), CRC Handbook of Solid State Electrochemistry, CRC Press, Boca Raton, FL, pp. 329–369.

    Google Scholar 

  11. A. Izquierdo and M. D. Luque de Castro (1995) Electroanalysis 7, 505–519.

    Google Scholar 

  12. J. W. Grate, S. J. Martin, and R. M. White (1993) Anal. Chem. 65, 940A.

    Google Scholar 

  13. G. C. M. Meijer and A. W. van Herwaarden (1994) Thermal Sensors, Institute of Physics, Bristol, UK.

    Google Scholar 

  14. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje (1998) Anal Chem. 70, 1639–1645.

    Google Scholar 

  15. I. R. Lewis and P. R. Griffiths (1996) Appl. Spectrosc. 50, 12A–30A.

    Google Scholar 

  16. M. Malmqvist (1996) in H. C. Hoch, L. W. Jelinski, and H. G. Craighead (Eds.), Nanofabricated Biosystems, Cambridge University Press, Cambridge, pp. 103–122.

    Google Scholar 

  17. G. Gauglitz (1996) Sens. Update 1, 1–45.

    Google Scholar 

  18. R. B. Thompson, B. P. Maliwal, V. L. Feliccia, C. A. Fierke, and K. McCall (1998) Anal. Chem. 70, 4717–4723.

    Google Scholar 

  19. F. V. Bright, T. A. Betts, and K. S. Litwiler (1990) Anal. Chem. 62, 1065–1069.

    Google Scholar 

  20. G. Walkup, and B. Imperiali (1996) J. Am. Chem. Soc. 118, 3053–3054.

    Google Scholar 

  21. G. Weber (1966) in E. C. Slater (Ed.), Flavin and Flavoproteins, Elsevier, New York, pp. 15–21.

    Google Scholar 

  22. A. Visser (1984) Photochem. Photobiol. 40, 703–706.

    Google Scholar 

  23. O. S. Wolfbeis and W. Trettnak (1989) SPIE 1172, 287–292.

    Google Scholar 

  24. W. Trettnak and O. S. Wolfbeis (1989) Anal. Chim. Acta 221, 195–203.

    Google Scholar 

  25. W. Trettnak and O. S. Wolfbeis (1989) Fresnius Z. Anal. Chem. 334, 427–430.

    Google Scholar 

  26. A. M. Harnett, C. M. Ingersoll, G. A. Baker, and F. V. Bright (1999) Anal. Chem. 71, 1215–1224.

    Google Scholar 

  27. R. B. Thompson and E. R. Jones (1993) Anal Chem. 65, 730–734.

    Google Scholar 

  28. D. Elbaum, S. K. Nair, M. W. Patchan, R. B. Thompson, and D. W. Christianson (1996) J. Am. Chem. Soc. 118, 8381–8387.

    Google Scholar 

  29. R. B. Thompson, and B. P. Maliwal (1998) Anal. Chem. 70, 1749–1754.

    Google Scholar 

  30. R. B. Thompson, B. P. Maliwal, V. L. Feliccia, C. A. Fierke, and K. McCall (1998) Anal. Chem. 70, 4717–4723.

    Google Scholar 

  31. C. M. Hanbury, W. G. Miller, and R. B. Harris (1997) Clin. Chem. 43, 2128–2136.

    Google Scholar 

  32. C. L. Morgan, D. J. Newman, and C. P. Price (1996) Clin. Chem. 42, 193–209.

    Google Scholar 

  33. B. Hock (1997) Anal. Chim. Acta 347, 177–186.

    Google Scholar 

  34. R. T. Piervincenzi, W. M. Reichert, and H. W. Hellinga (1998) Biosens. Bioelectron. 13, 305–312.

    Google Scholar 

  35. J. D. Stewart, V. A. Roberts, M. W. Crowder, E. D. Getzoff, and S. J. Benkovic (1994) J. Am. Chem. Soc. 116, 415–416.

    Google Scholar 

  36. G. V. Richieri, R. T. Ogata, and A. M. Kleinfeld (1992) J. Biol. Chem. 267, 23495–23501.

    Google Scholar 

  37. P. L. Post, K. M. Trybus, and D. L. Taylor (1994) J. Biol. Chem. 269, 12880–12887.

    Google Scholar 

  38. S. L. Barker, R. Kopelman, T. E. Meyer, and M. A. Cusanovich (1998) Anal. Chem. 70, 971–976.

    Google Scholar 

  39. M. Gerstein, A. M. Lesk, and C. Chothia (1994) Biochemistry 33, 6739–6749.

    Google Scholar 

  40. K. A. Giuliano, P. L. Post, K. M. Hahn, and D. L. Taylor (1995) Annu. Rev. Biophys. Biomol. Struct. 24, 405–434.

    Google Scholar 

  41. H. W. Hellinga and J. S. Marvin (1998) Trends Biotechnol. 16, 183–189.

    Google Scholar 

  42. A. M. Lesk and C. Chothia (1988) Nature 335, 188–190.

    Google Scholar 

  43. G. K. Walkup and B. Imperiali (1997) J. Am. Chem. Soc. 119, 3443–3450.

    Google Scholar 

  44. H. A. Godwin and J. M. Berg (1996) J. Am. Chem. Soc. 118, 6514–6515.

    Google Scholar 

  45. F. G. Prendergast, M. Meyer, G. L. Carlson, S. Iida, and J. D. Potter (1983) J. Biol. Chem. 258, 7541–7543.

    Google Scholar 

  46. K. M. Hahn, A. S. Waggoner, and D. L. Taylor (1990) J. Biol. Chem. 265, 20335–20345.

    Google Scholar 

  47. T. L. Blair, S.-T. Yang, T. Smith-Palmer, and L. G. Bachas (1994) Anal. Chem. 66, 300–302.

    Google Scholar 

  48. J. A. Putkey, W. Liu, X. Lin, S. Ahmed, M. Zhang, J. D. Potter, and W. G. L. Kerrick (1997) Biochemistry 36, 970–978.

    Google Scholar 

  49. R. Y. Tsien and A. Miyawaki (1998) Science 280, 1954–1955.

    Google Scholar 

  50. V. A. Romoser, P. M. Hincle, and A. Persechini (1997) J. Biol. Chem. 272, 13270–13274.

    Google Scholar 

  51. A. Persechini, J. A. Lynch, and V. A. Rosomer (1997) Cell Calcium 22, 209–216.

    Google Scholar 

  52. A. Miyawaki, J. Liopis, R. Helm, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsein (1997) Nature 388, 882–887.

    Google Scholar 

  53. S. R. Adams, A. T. Harootunian, Y. J. Buechler, S. S. Taylor, and R. Y. Tsien (1991) Nature 349, 694–697.

    Google Scholar 

  54. R. Lui and J. Sharom (1996) Biochemistry 35, 11865–11873.

    Google Scholar 

  55. J. Lee, P. F. Pilch, S. E. Shoelson, and S. F. Scarlata (1997) Biochemistry 36, 2701–2708.

    Google Scholar 

  56. G. Gilardi, L. Q. Zhou, L. Hibbert, and A. E. G. Cass (1994) Anal. Chem. 66, 3840–3847.

    Google Scholar 

  57. M. Brune, J. L. Hunter, J. E. T. Corrie, and M. R. Webb (1994) Biochemistry 33, 8262–8371.

    Google Scholar 

  58. C. Lionne, M. Brune, M. R. Webb, F. Travers, and T. Barman (1995) FEBS Lett. 364, 59–62.

    Google Scholar 

  59. A. E. Nixon, M. Brune, P. N. Lowe, and M. R. Webb (1995) Biochemistry 34, 15592–15598

    Google Scholar 

  60. M. Brune, J. L. Hunter, S. A. Howell, S. R. Martin, T. L. Hazlett, J. E. T. Corrie, and M. R. Webb (1998) Biochemistry 37, 10370–10380.

    Google Scholar 

  61. J. S. Lundgren, L. L. E. Salins, I. Kaneva, and S. Daunert (1999) Anal. Chem. 71, 589–595.

    Google Scholar 

  62. M. Hirshberg, K. Hendrick, L. L. Haire, N. Vasisht, M. Brune, J. E. T. Corrie, and M. R. Webb (1998) Biochemistry 37, 10381–10385.

    Google Scholar 

  63. A. N. Watkins and F. V. Bright (1998) Appl. Spectrosc. 52, 1447–1456.

    Google Scholar 

  64. J. S. Marvin, E. E. Corcoran, N. A. Hattangadi, J. V. Zhang, S. A. Gere, and H. W. Hellinga (1997) Proc. Natl. Acad. Sci. USA 94, 4366–4371.

    Google Scholar 

  65. J. S. Marvin and H. W. Hellinga (1998) J. Am. Chem. Soc. 120, 7–11.

    Google Scholar 

  66. P. Audebert, C. Demaille, and C. Sanchez (1993) Chem. Mater. 5, 911–913.

    Google Scholar 

  67. D. A. Gough and J. C. Armour (1995) Diabetes 44, 1005–1009.

    Google Scholar 

  68. K. Rose (1994) J. Am. Chem. Soc. 116, 30–33.

    Google Scholar 

  69. G. J. Cotton, B. Ayers, R. Zu, and T. W. Muir (1999) J. Am. Chem. Soc. 121, 1100–1101.

    Google Scholar 

  70. T. Hahsaka, K. Kajihara, Y. Ashizuka, J. Murakami, and M. Sisido (1999) J. Am. Chem. Soc. 121, 34–40.

    Google Scholar 

  71. D. Mendel, V. W Comish, and P. G. Schultz (1995) Annu. Rev. Biophys. Biomol. Struct. 24, 435–462.

    Google Scholar 

  72. L. E. Steward, C. S. Collins, M. A. Gilmore, J. E. Carlson, J. B. A. Ross, and A. R. Chamberlin (1997) J. Am. Chem. Soc. 119, 6–11.

    Google Scholar 

  73. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi (1994) Chem. Mater. 6, 1605–1614.

    Google Scholar 

  74. B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink (1994) Anal. Chem. 66, 1120A–1126A.

    Google Scholar 

  75. J. D. Brennan (1999) Appl. Spectrosc. 53, in press.

  76. Q. Chen, G. L. Kenausis, and A. Heller (1998) J. Am. Chem. Soc. 120, 4582–4585.

    Google Scholar 

  77. A. Bronshtein, N. Aharonson, D. Avnir, A. Turniansky, and M. Altstein (1997) Chem. Mater. 9, 2632–2639.

    Google Scholar 

  78. L. Zheng, W. R. Reid, and J. D. Brennan (1997) Anal. Chem. 69, 3940–3949.

    Google Scholar 

  79. S. A. Yamanaka, F. Nishida, L. M. Ellerby, C. R. Nishida, B. Dunn, J. S. Valentine, and J. I. Zink (1992) Chem. Mater. 4, 495–497.

    Google Scholar 

  80. C. J. Brinker and G. W. Scherer (1989) Sol-Gel Science, Academic Press, New York.

    Google Scholar 

  81. L. L. Hench and J. K. West (1990) Chem. Rev. 90, 33–72.

    Google Scholar 

  82. N. Shibayama and S. Saigo (1995) J. Mol. Biol. 251, 203–209.

    Google Scholar 

  83. P. L. Edmiston, C. L. Wambolt, M. K. Smith, and S. S. Saavedra (1994) J. Coll. Int. Sci. 163, 395–406.

    Google Scholar 

  84. J. D. Jordan, R. A. Dunbar, and F. V. Bright (1995) Anal. Chem. 67, 2436–2443.

    Google Scholar 

  85. K. K. Flora and J. D. Brennan, (1998) Anal. Chem. 70, 4505–4513.

    Google Scholar 

  86. B. C. Dave, H. Soyez, J. M. Miller, B. Dunn, J. S. Valentine, and J. I. Zink (1995) Chem. Mater. 7, 1431–1434.

    Google Scholar 

  87. C. M. L. Hutnik, J. P. MacManus, and A. G. Szabo (1990) Biochemistry 29, 7318–7328.

    Google Scholar 

  88. C. M. L. Hutnik, MacManus, D. Banville, and A. G. Szabo (1990) J. Biol. Chem. 265, 11456–11464.

    Google Scholar 

  89. J. P. MacManus, C. M. L. Hutnik, B. D. Sykes, A. G. Szabo, T. C. Williams, and D. Banville (1988) J. Biol. Chem. 264, 3470–3477.

    Google Scholar 

  90. I. D. Clark, A. J. Bruckman, C. W. V. Hogue, J. P. MacManus, and A. G. Szabo (1994) J. Fluoresc. 4, 235–241.

    Google Scholar 

  91. C. Shen and N. M. Kostic (1997) J. Am. Chem. Soc. 119, 1304–1312.

    Google Scholar 

  92. S. Xu, L. Ballard, Y. J. Kim, and J. Jonas (1995) J. Phys. Chem. 99, 5787–5792.

    Google Scholar 

  93. J.-P. Korb, A. Delville, S. Xu, G. Demeulenaere, P. Costa, and J. Jonas, (1994) J. Chem. Phys. 101, 7074–7081.

    Google Scholar 

  94. L. Zheng, K. Flora, and J. D. Brennan (1998) Chem. Mater. 10, 3974–3983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, J.D. Preparation and Entrapment of Fluorescently Labeled Proteins for the Development of Reagentless Optical Biosensors. Journal of Fluorescence 9, 295–312 (1999). https://doi.org/10.1023/A:1020583907419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020583907419

Navigation