Skip to main content
Log in

Peroxisome proliferator-activated receptors: Lipid binding proteins controling gene expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. Since their discovery in the beginning of the nineties the three isoforms (PPARα, β/δ and γ, encoded by different genes) have been implicated in the regulation of almost every single aspect of lipid metabolism and, consequently, in diseases that involve disturbances in lipid metabolism (obesity, diabetes, atherosclerosis, cardiac failure). Although their prominent role in these processes has hardly been disputed, the way in which the activity of these transcription factors is regulated under physiological and pathological conditions awaits further clarification. An unresolved issue has been the nature of the natural ligand of these receptors. Biochemical studies have shown that the PPAR isoforms are rather promiscuous with respect to ligand binding, with a large variety of naturally occurring lipid-like substances acting as low-affinity ligands. More recently this concept has been confirmed by crystallographic studies on the ligand-binding pocket. In addition to ligand availability, the trans-activating capacity likely depends on phosphorylation status of the PPARs and on the recruitment of auxiliary proteins (co-activators and co-repressors). Accordingly, the biological activity of these key-regulators of metabolism is controlled at multiple levels, which enables each tissue to fine tune its metabolic machinery to the demands of the body in a specific fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Issemann I, Green S: Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–650, 1990

    Google Scholar 

  2. Tsai MJ, O'Malley BW: Molecular mechanisms of action of steroid/ thyroid receptor superfamily members. Ann Rev Biochem 63: 451–486, 1994

    Google Scholar 

  3. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM: Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774, 1992

    Google Scholar 

  4. Van der Lee KAJM, Willemsen PHM, van der Vusse GJ, van Bilsen M: Effects of fatty acids on uncoupling protein-2 expression in the rat heart. FASEB J 14: 495–502, 2000

    Google Scholar 

  5. Wu P, Peters JM, Harris RA: Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferatoractivated receptor α. Biochem Biophys Res Commun 287: 391–396, 2001

    Google Scholar 

  6. Kersten S, Mandard S, Escher P, Gonzalez FJ, Tafuri S, Desvergne B, Wahli W: The peroxisome proliferator-activated receptor α regulates amino acid metabolism. FASEB J 15: 1971–1978, 2001

    Google Scholar 

  7. Fruchart J-C, Duriez P, Staels B: Peroxisome proliferator-activated receptor-α activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10: 245–257, 1999

    Google Scholar 

  8. Grimaldi PA: Roles of lipid-activated receptors in the adipogenic action of fatty acids. Lipids 34: S205–S208, 1999

    Google Scholar 

  9. Vanden Heuvel JP: Peroxisome proliferator-activated receptors: A critical link among fatty acids, gene expression and carcinogenesis. J Nutr 129: 575S–580S, 1999

    Google Scholar 

  10. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J: The organization, promoter analysis, and expression of the human PPARγ gene. J Biol Chem 272: 18779–18789, 1997

    Google Scholar 

  11. Gervois P, Torra IP, Chinetti G, Grötzinger T, Dubois G, Fruchart J-C, Fruchart-Najib J, Leitersdorf E, Staels B: A truncated human peroxisome proliferator-activated receptor α splice variant with dominant negative activity. Mol Endocrinol 13: 1535–1549, 1999

    Google Scholar 

  12. Hanselman JC, Vartanian MA, Koester BP, Gray SA, Essenburg AD, Rea TJ, Bisgaier CL, Pape ME: Expression of the mRNA encoding truncated PPARα does not correlate with hepatic insensitivity to peroxisome proliferators. Mol Cell Biochem 217: 91–97, 2001

    Google Scholar 

  13. Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, Umesono K, Evans RM: Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 91: 7355–7359, 1994

    Google Scholar 

  14. Aperlo C, Pognonec P, Saladin R, Auwerx J, Boulukos KE: cDNA cloning and characterization of the transcriptional activities of the hamster peroxisome proliferator-activated receptor haPPARγ. Gene 162: 297–302, 1995

    Google Scholar 

  15. Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W: Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α,-β, and-γ in the adult rat. Endocrinology 137: 354–366, 1996

    Google Scholar 

  16. Takano H, Nagai T, Asakawa M, Toyozaki T, Oka T, Komuro I, Saito T, Masuda Y: Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-α expression in neonatal rat cardiac myocytes. Circ Res 87: 596–602, 2000

    Google Scholar 

  17. Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, Tanen M, Ventre J, Wu MS, Berger GD, Mosley R, Marquis R, Santini C, Sahoo SP, Tolman RL, Smith RG, Moller DE: Novel peroxisome proliferator-activated receptor (PPAR) γ and PPARδ ligands produce distinct biological effects. J Biol Chem 274: 6718–6725, 1999

    Google Scholar 

  18. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM: PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7: 48–52, 2001

    Google Scholar 

  19. Brunmair B, Gras F, Neschen S, Roden M, Wagner L, Waldhausl W, Furnsinn C: Direct thiazolidinedione action on isolated rat skeletal muscle fuel handling is independent of peroxisome proliferator-activated receptor-γ-mediated changes in gene expression. Diabetes 50: 2309–2315, 2001

    Google Scholar 

  20. Yamamoto K, Ohki R, Lee RT, Ikeda U, Shimada K: Peroxisome proliferator-activated receptor γ activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 104: 1670–1675, 2001

    Google Scholar 

  21. Carroll R, Severson DL: Peroxisome proliferator-activated receptor-α ligands inhibit cardiac lipoprotein lipase activity. Am J Physiol Heart Circ Physiol 281: H888–894, 2001

    Google Scholar 

  22. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM: 15-Deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83: 803–812, 1995

    Google Scholar 

  23. Gottlicher M, Widmark E, Li Q, Gustafsson JA: Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci USA 89: 4653–4657, 1992

    Google Scholar 

  24. Issemann I, Prince RA, Tugwood JD, Green S: The peroxisome proliferator-activated receptor: retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol 11: 37–47, 1993

    Google Scholar 

  25. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci USA 94: 4318–4323, 1997

    Google Scholar 

  26. Forman BM, Chen J, Evans RM: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferatoractivated receptors α and δ. Proc Natl Acad Sci USA 94: 4312–4317, 1997

    Google Scholar 

  27. Johnson TE, Holloway MK, Vogel R, Rutledge SJ, Perkins JJ, Rodan GA, Schmidt A: Structural requirements and cell-type specificity for ligand activation of peroxisome proliferator-activated receptors. J Steroid Biochem Mol Biol 63: 1–8, 1997

    Google Scholar 

  28. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV: Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3: 397–403, 1999

    Google Scholar 

  29. Wolfrum C, Borrmann CM, Borchers T, Spener F: Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α-and γ-mediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus. Proc Natl Acad Sci USA 98: 2323–2328, 2001

    Google Scholar 

  30. Elholm M, Dam I, Jorgensen C, Krogsdam AM, Holst D, Kratchmarova I, Gottlicher M, Gustafsson JA, Berge R, Flatmark T, Knudsen J, Mandrup S, Kristiansen K: Acyl-CoA esters antagonize the effects of ligands on peroxisome proliferator-activated receptor α conformation, DNA binding, and interaction with Co-factors. J Biol Chem 276: 21410–21416, 2001

    Google Scholar 

  31. Murakami K, Ide T, Nakazawa T, Okazaki T, Mochizuki T, Kadowaki T: Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor coactivator 1 to α and γ isoforms of peroxisome-proliferator-activated receptors by competing with agonists. Biochem J 353: 231–238, 2001

    Google Scholar 

  32. Krey G, Braissant O, L-Horset F, Kalkhoven E, Perroud M, Parker MG, Wahli W: Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11: 779–791, 1997

    Google Scholar 

  33. Murakami K, Ide T, Suzuki M, Mochizuki T, Kadowaki T: Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor α. Biochem Biophys Res Commun 260: 609–613, 1999

    Google Scholar 

  34. Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS: Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72: 881–940, 1992

    Google Scholar 

  35. Borchers T, Unterberg C, Rudel H, Robenek H, Spener F: Subcellular distribution of cardiac fatty acid-binding protein in bovine heart muscle and quantitation with an enzyme-linked immunosorbent assay. Biochim Biophys Acta 1002: 54–61, 1989

    Google Scholar 

  36. Grimaldi PA, Knobel SM, Whitesell RR, Abumrad NA: Induction of aP2 gene expression by nonmetabolized long-chain fatty acids. Proc Natl Acad Sci USA 89: 10930–10934, 1992

    Google Scholar 

  37. Jump DB, Clarke SD, Thelen A, Liimatta M: Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res 35: 1076–1084, 1994

    Google Scholar 

  38. van Bilsen M, van der Vusse GJ, Reneman RS: Transcriptional regulation of metabolic processes: Implications for cardiac metabolism. Pflügers Arch 437: 2–14, 1998

    Google Scholar 

  39. Van der Lee KAJM, Vork MM, de Vries JE, Willemsen PHM, Glatz JFC, Reneman RS, van der Vusse GJ, van Bilsen M: Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res 41: 41–47, 2000

    Google Scholar 

  40. Mascaro C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D: Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 273: 8560–8563, 1998

    Google Scholar 

  41. Brandt JM, Djouadi F, Kelly DP: Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor α. J Biol Chem 273: 23786–23792, 1998

    Google Scholar 

  42. Van der Lee KAJM, Willemsen PHM, Samec S, Seydoux J, Dulloo AG, Pelsers MMAL, Glatz JFC, van der Vusse GJ, van Bilsen M: Fastinginduced changes in the expression of genes controlling substrate metabolism in the rat heart. J Lipid Res 42: 1752–1758, 2001

    Google Scholar 

  43. Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T: Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity. J Biol Chem 275: 22293–22299, 2000

    Google Scholar 

  44. Leone TC, Weinheimer CJ, Kelly DP: A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: The PPARα-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 96: 7473–7478, 1999

    Google Scholar 

  45. Schoonjans K, Staels B, Grimaldi P, Auwerx J: Acyl-CoA synthetase mRNA expression is controlled by fibric-acid derivatives, feeding and liver proliferation. Eur J Biochem 216: 615–622, 1993

    Google Scholar 

  46. Schoonjans K, Staels B, Auwerx J: Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 37: 907–925, 1996

    Google Scholar 

  47. Schoonjans K, Peinado-Onsurbe J, Lefebvre A-M, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J: PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15: 5336–5348, 1996

    Google Scholar 

  48. Cook WS, Yeldandi AV, Rao MS, Hashimoto T, Reddy JK: Less extrahepatic induction of fatty acid beta-oxidation enzymes by PPARα. Biochem Biophys Res Commun 278: 250–257, 2000

    Google Scholar 

  49. Juge-Aubry CE, Gorla-Bajszczak A, Pernin A, Lemberger T, Wahli W, Burger AG, Meier CA: Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat. J Biol Chem 270: 18117–18122, 1995

    Google Scholar 

  50. Meier-Heusler SC, Zhu X, Juge-Aubry C, Pernin A, Burger AG, Cheng S-y, Meier CA: Modulation of thyroid hormone action by mutant thyroid hormone receptors, c-erbAα2 and peroxisome proliferator-activated receptor: evidence for different mechanisms of inhibition. Mol Cell Endocrin 107: 55–66, 1995

    Google Scholar 

  51. Winrow CJ, Kassam A, Miyata KS, Marcus SL, Hunter J, Capone JP, Rachubinski RA: Interplay of the peroxisome proliferator-activated receptor and the thyroid hormone receptor-signaling pathways in regulating peroxisome proliferator-responsive genes. Ann NY Acad Sci 804: 214–230, 1996

    Google Scholar 

  52. Marcus SL, Capone JP, Rachubinski RA: Identification of COUP-TFII as a peroxisome proliferator response element binding factor using genetic selection in yeast: COUP-TFII activates transcription in yeast but antagonizes PPAR signaling in mammalian cells. Mol Cell Endocrinol 120: 31–39, 1996

    Google Scholar 

  53. Huss JM, Levy FH, Kelly DP: Hypoxia inhibits the peroxisome proliferator-activated receptor α/retinoid X receptor gene regulatory pathway in cardiac myocytes: A mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem 276: 27605–27612, 2001

    Google Scholar 

  54. Miyata KS, Zhang B, Marcus SL, Capone JP, Rachubinski RA: Chicken ovalbumin upstream promoter transcription factor (COUP-TF) binds to a peroxisome proliferator-responsive element and antagonizes peroxisome proliferator-mediated sigaling. J Biol Chem 268: 19169–19172, 1993

    Google Scholar 

  55. McKenna NJ, Lanz RB, O'Malley BW: Nuclear receptor coregulators: Cellular and molecular biology. Endocr Rev 20: 321–344, 1999

    Google Scholar 

  56. Zhu Y, Qi C, Calandra C, Rao MS, Reddy JK: Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor γ. Gene Expres 6: 185–195, 1996

    Google Scholar 

  57. Zhu Y, Qi C, Jain S, Rao MS, Reddy JK: Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem 272: 25500–25506, 1997

    Google Scholar 

  58. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839, 1998

    Google Scholar 

  59. Gelman L, Zhou G, Fajas L, Raspé E, Fruchart J-C, Auwerx J: p300 interacts with the N-and C-terminal part of PPARγ2 in a ligand-independent and-dependent manner, respectively. J Biol Chem 274: 7681–7688, 1999

    Google Scholar 

  60. Miyata KS, McCaw SE, Meertens LM, Patel HV, Rachubinski RA, Capone JP: Receptor-interacting protein 140 interacts with and inhibits transactivation by, peroxisome proliferator-activated receptor α and liver-X-receptor α. Mol Cell Endocrinol 146: 69–76, 1998

    Google Scholar 

  61. Robinson CE, Wu X, Nawaz Z, Oñate SA, Gimble JM: A corepressor and chicken ovalbumin upstream promoter transcriptional factor proteins modulate peroxisome proliferator-activated receptor-γ2/retinoid X receptor α-activated transcription from the murine lipoprotein lipase promoter. Endocrinology 140: 1586–1593, 1999

    Google Scholar 

  62. Dowell P, Ishmael JE, Avram D, Peterson VJ, Nevrivy DJ, Leid M: Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor α interacting protein. J Biol Chem 274: 15901–15907, 1999

    Google Scholar 

  63. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen T-M, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hisenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW: Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95: 2920–2925, 1998

    Google Scholar 

  64. Camp HS, Tafuri SR: Regulation of peroxisome proliferator-activated receptor γ activity by mitogen-activated protein kinase. J Biol Chem 272: 10811–10816, 1997

    Google Scholar 

  65. Camp HS, Tafuri SR, Leff T: c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-γ1 and negatively regulates its transcriptional activity. Endocrinology 140: 392–397, 1999

    Google Scholar 

  66. Juge-Aubry CE, Hammar E, Siegrist-Kaiser C, Pernin A, Takeshita A, Chin WW, Burger AG, Meier CA: Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor α by phosphorylation of a ligand-independent trans-activating domain. J Biol Chem 274: 10505–10510, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Bilsen, M., van der Vusse, G.J., Gilde, A.J. et al. Peroxisome proliferator-activated receptors: Lipid binding proteins controling gene expression. Mol Cell Biochem 239, 131–138 (2002). https://doi.org/10.1023/A:1020553428294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020553428294

Navigation