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Programmed cell death or apoptosis is a widespread biologi-
cal phenomenon. Apoptosis is characterized by typical cell
features such as membrane blebbing, chromatin condensa-
tion, and DNA fragmentation. It involves a number of mem-
brane receptors (e.g., Fas, TNFR) and a cascade of signal
transduction steps resulting in the activation of a number of
cysteine proteases known as caspases. Disordered apoptosis
may lead to carcinogenesis and participates in the pathogene-
sis of Alzheimer disease, Parkinson disease, or AIDS. Pro-
grammed cell death plays an important role in the processes
of gamete maturation as well as in embryo development,
contributing to the appropriate formation of various organs
and structures. Apoptosis is one of the mechanisms of action
of various cytotoxic agents and teratogens. Teratogen-
induced excessive death of embryonic cells is undoubtedly
one of the most important events preceding the occurrence of
structural abnormalities, regardless of their nature. Therefore
understanding the mechanisms involved in physiological as
well as in disturbed or dysregulated apoptosis may lead to
the development of new methods of preventive treatment
of various developmental abnormalities. The present review
summarizes data on the mechanisms of programmed cell
death and concentrates on apoptosis involved in normal
or disturbed gametogenesis and in normal and abnormal
embryonic development.

KEY WORDS: apoptosis; gametogenesis; embryogenesis;
maldevelopment.

INTRODUCTION

The death of live cells can occur due to one of two
mechanisms. It may be a response to external damag-
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ing insults or may be a predetermined event in their
developmental program [“programmed cell death”
(PCD) or “apoptosis”]. PCD seems to play an
important role in mammalian reproduction and devel-
opment. Apoptosis first appears in the 32- to 64-cell
embryo and can be demonstrated during the whole
embryogenesis, when it plays an essential role in virtu-
ally all of the stages of development necessary to pro-
duce a normally developed newborn.

In recent years evidence has accumulated that the
formation of inborn anomalies or intrauterine death,
induced by different developmental toxicants, result
from distortions of the normal pattern of PCD in the
embryo (1). Various chemical agents and physical fac-
tors have been shown to exert their effect by disturbing
the apoptotic process occuring during gametogenesis
(2). This review outlines the role of apoptosis in
gametogenesis and embryogenesis and its role in
determining responses to gametotoxic agents and
developmental toxicants.

MORPHOLOGY AND MECHANISMS OF
PHYSIOLOGICAL APOPTOSIS

Stereotypical morphological changes occur in
almost all cells undergoing apoptotic death. The signs
of apoptosis include cell shrinkage, membrane bleb-
bing, nuclear condensation, and fragmentation, and,
finally, the formation of separated vesicles called
“apoptotic bodies” (3). The major biochemical event
associated with apoptosis is DNA fragmentation by
different nucleases (4). Gel electrophoresis shows the
formation of a specific picture called the DNA “lad-
der,” consisting of DNA fragments of a certain molecu-
lar weight.



APOPTOSIS IN REPRODUCTION

Apoptosis is regulated at three levels (Fig. 1). At the
membrane level, there are specific membrane receptors
mediating death signals. At the nuclear level, the
genome contains genes which are transcribed as a
response to apoptotic process initiation. At the cyto-
plasmic level, there are signal transduction pathways.
The initial pathways leading to signal transduction are
different for each receptor, however, the final stages
are similar in most cases and involve cysteine proteases
called “caspases” (5).

The main death-mediating membrane receptors are
those of the tumor necrosis factor receptor (TNFR)
family including the surface complex Fas. Receptors
of the TNFR family are widely expressed on various
cell types, both normal and malignant and in different
parts of the embryo (6). Binding to the specific ligand
results in the formation of the specific molecular asso-
ciation on the inner surface of the membrane known
as the “death-inducing signaling complex,” including
procaspase-8 (7). As a result, activated caspase-8 dis-
sociates from the membrane and goes to the cytoplasm,
where it stimulates other caspases (first of all caspase-
3) and, together with them, mediates apoptotic changes
in cell nucleus.

Among the apoptosis regulating genes, there are two
important gene families: the pS3 tumor supressor gene,
a molecular responder to DNA damage (8), and the
Bcl-2 gene family. The P53 gene is involved in various
events including cell cycle arrest, stimulation of DNA
repair, and apoptosis (9). When cell DNA is damaged,
p53 mediates a temporal arrest of the cell cycle in the
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Fig. 1. Basic pathways of the apoptotic process.
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G1 phase, giving the cell sufficient time to repair its
DNA (10). If the DNA damage is too severe to be
repaired, p53 initiates cell death by stimulating the Fas
receptor complex and Bax (proapoptotic member of
the Bcl-2 family of genes) on the mitochondrial mem-
brane, leading to caspase-3 activation (11). Thus, p53
prevents the further development and reproduction of
a cell with a damaged genome.

The Bcl-2 family of genes is another important sys-
tem regulating the apoptotic response. The Bcl-2 genes
and their corresponding proteins may inhibit the apop-
totic process or propagate it (12). Antideath factors of
the Bcl-2 family prevent the release of cytochrome
¢ from mitochondria, thus stabilizing mitochondrial
membrane potential. However, proapoptotic members
of the Bcl-2 family propagate membrane permeabilty
and ionic imbalance (13), leading to the release of
cytochrome c. In the cytosol cytochrome ¢ activates
caspase-9 in the presence of a protein called apoptosis
activating factor (14). Caspase-9 in turn stimulates
caspase-3 playing a central role in the execution of
apoptosis (15).

The above data demonstrate that apoptosis is a very
complicated process. Therefore, it is clear that various
damaging agents acting at the different steps of apop-
totic machinery are capable to alter normal course of
apoptotic cell death, thus disturbing processes in which
apoptosis is involved.

APOPTOSIS IN GAMETOGENESIS

Apoptosis in Normal Gametogenesis

Apoptosis plays an essential role in spermatozoid
and oocyte maturation in physiological conditions
(16). It serves as a “guardian,” controlling the quality
of developing and differentiating cells and removing
those which have undergone mutations or DNA dam-
age which may be deleterious. On the opposite, any
disturbance in normal pattern of apoptotic cell death
causes marked abnormalities in gametogenesis. Nor-
mal gonadogenesis is characterized by a specific pat-
tern of apoptotic cell death coinciding with certain
periods in germ cell development. There are two peaks
of spermatogenic cell apoptosis in mice—at 13 day
postcoitum and around 10-13 days after birth—the
first corresponding to the period of primordial germ
cells immigration into gonads (17) and the second
corresponding to the period when spermatogonia
undergo active proliferation. The stable recurrence of
these apoptotic waves indicates their importance in
gametogenesis. In physiological oogenesis apoptosis
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contributes to the degeneration of the majority of ovar-
ian germ cells both during prenatal and reproductive
life (18). Apoptosis involves two main phases of the
meiotic process: an earlier one concerning the oogonia
and oocytes in the preleptotene stage and a later one
that concerns mainly the oocytes in the pachytene
stage (19).

In addition to the germ cells themselves, apoptosis
occurs in other cells, contributing to sperm maturation.
The Sertoli cells also participate in the differentiation
of the gametes (17). Recent works have also revealed
that Sertoli cells are involved in apoptotic death (20).

Germ cells have been shown to possess the apopto-
genic “machinery” described above. These cells have
Fas as a main membrane death-mediating receptor,
p53 gene as a protector of further development of
damaged cells and antiapoptotic mechanisms including
the Bcl-2 gene family. Flow cytometry and immuno-
histochemistry have demonstrated the expression of
Fas on germ cells including spermatogonia, spermato-
cytes, spermatids (21), Leydig cells, Sertoli cells, and
epithelial cells in the epidydimal duct (22). Expression
of both Fas and the Fas-ligand (FasL) has also been
detected in various kinds of tumors associated with
the reproductive system (e.g., seminomas, carcinomas,
yolk sac tumors) (23). Using immunohistochemistry
Fas was localized to germ cells and Fas ligand to
Sertoli cells (24). The expression of Fas was elevated
after application of two germ cells apoptosis inducers
so that the Sertoli cells seem to control the quality
of germ cell output during spermatogenesis. Recent
investigations identified DNA encoding a special death
domain (called DEFT; death effector domain-con-
taining testicular molecule) which is expressed in germ
cells and may be important in the regulation of
apoptosis during spermatogenesis (25). P53 mRNA is
found in early spermatocytes (26) and p53 protein has
been detected in mature spermatocytes in mice (27)
and rats (28). Apoptosis is reduced and cell numbers
increased in tetraploid germ cells in p53-negative mice
(29). Morphological examination has revealed an ele-
vated percentage of abnormal forms of spermatozoids
in p53-knockout mice. Moreover, p53-deficient mice
sired fewer offspring than p53-positive mice when both
groups were mated with p53-positive females.

Along with the apoptogenic pathways, mechanisms
confining apoptosis also exist in the gametes. It is
uncertain whether the main apoptosis-inhibiting gene,
Bcl-2 is expressed in germ cells. Bel-2 products have
been reported to be absent in the mammalian testis
(30). There are reports suggesting that different mem-
bers of the Bcl-2 family of genes are expressed in
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gonadogenesis. Bax is a potent inducer of apoptosis
and Bax knockout mice are sterile (31). Mice lacking
Bcl-w are viable, healthy, and normal in appearance,
but the males are infertile (32). Both Sertoli cells and
germ cells are reduced in number and the most mature
germ cells are the most severely damaged. Conse-
quently, the Bcl-2 family of genes seems to play an
important but not completely understood role in gonad-
ogenesis.

Apoptosis in Abnormal Gametogenesis

The apoptosis of normal gametogenesis can be
altered by different factors. Dysregulation of apoptotic
cell death resulting from the action of different patho-
genic agents leads to abnormal germ cells develop-
ment. Various stimuli may disorder the essential
cellular systems, making the cell potentially dangerous
or merely inviable. Such cells undergo apoptotic cell
death.

The whole diversity of deleterious stimuli can be
classified according to the mechanisms involved in
modification of the apoptotic response. Agents influ-
encing DNA integrity act chiefly via P53. Indeed, radi-
ation (which is capable of killing the great majority
of differentiating spermatogonia) was shown to acti-
vate p53 due to its DNA-alterating effect (33). Carcino-
genic process in germ cells is also associated with
disturbances in the regulation of apoptosis by p53 (34).
At the same time abnormal apoptosis caused by envi-
ronmental toxicants and some typical pathological pro-
cesses leading to germ cells maldevelopment is often
mediated whereby the Fas—FasL system. The Sertoli
cell toxicant, mono-(2-ethylhexyl) phthalate, induces
excessive germ cell death through overexpression of
Fas and FasL (2). Such clinically important process as
ovary atresia is based on dysregulation of Fas-mediated
apoptosis (35). Detuning of the Fas-associated pathway
participates at least partially in the formation of cryp-
torchidism in experiment (36).

Antiapoptotic mechanisms can prevent, to some
extent, the excessive apoptosis caused by damaging
agents. For example, overexpression of Bcl-X,,, which
is an antiapoptotic member of the Bcl-2 family, inhibits
apoptosis induced by etoposide (37), whereas Bcl-2
itself participates in regulation of apoptotic cell death
induced by androgen withdrawal (38).

Therefore, it scems that PCD is necessary at different
stages of germ cell development. Some pathogens alter
the normal apoptotic pattern, leading to hypertrophic
cell death. The excessive apoptosis caused by different
deleterious stimuli (drugs, radiation, environmental
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toxicants) which cannot be compensated by antiapop-
totic mechanisms results in severe disorders in the pro-
cess of germ cell maturation.

APOPTOSIS IN EMBRYO DEVELOPMENT

PCD is present in mammalian blastocysts, and its
normal pattern is crucial for further development. Both
sections of the blastocyst (inner cell mass and tro-
phoectoderm) undergo apoptosis during normal devel-
opment (39). However, both have different sensitivities
to apoptosis-inducing factors (40). Distortions of
apoptosis in the blastocyst result in compromise of
future maturation and may lead to either early embry-
onic death or the formation of anomalies in the fetus
(41).

At the later stages of normal embryo development,
apoptosis plays a key role in the formation of the
extraembryonic structures and the embryo itself. Thus,
apoptosis has been demonstrated in fetal membranes
(42). Electronic microscopy revealed ultrastructural
changes in the amniotic epithelium and chorionic tro-
phoblast cells consistent with apoptosis such as con-
densation of chromatin along the periphery of the
nucleus and nuclear shrinkage. Mechanistic studies
have revealed the involvement of Fas-mediated signal-
ing pathways in the rearrangement of fetal membrane
architecture during gestation.

Human trophoblast has been reported to undergo
apoptosis under physiological conditions (43). The
Bcl-2 gene and the Fas receptor have been shown to
be involved in the regulation of this apoptotic process
(44, 45). Therefore, apoptotic cell death may also play
a key role in trophoblast turnover and renewal.

Apoptosis in postimplantation embryos is involved
in processes such as eliminating abnormal, misplaced,
nonfunctional, or harmful cells, sculpting structures,
eliminating unwanted structures, and controlling cell
numbers (46).

Formation of the preamniotic cavity has been shown
to occur due to the death of the ectodermal cells in
the core of the developing embryo. Apoptosis contri-
butes to the formation of vesicles and tubes (e.g., neural
tube) when epithelial sheets invaginate and tissue
inside has to be eliminated (46). Neurons and oligoden-
drocytes which are overproduced during the develop-
ment of the nervous system are also eliminated by
apoptosis (47).

One example of the role of apoptosis can be seen
in the hand plate. Here, cells which develop between
the fingers are eliminated through apoptosis (48). The
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digits themselves begin to form as condensations of
initial mesenchymal tissue. These condensations are
the primary signs of future digit location (49).
Apoptosis normally proceeds in zones which do not
undergo condensation and is confined to strictly deter-
mined areas of mesenchyme. Further apoptosis
expands into the whole interdigital mesenchymal tissue
(50). Certain embryonic structures are removed during
apoptosis, e.g., the Mullerian duct degenerates in males
and the Wolffian duct degenerates in females. In both
sexes, the pronephric tubes in mammalian embryos
also disappear (17,51).

The above findings demonstrate the important role
of apoptosis in the normal development. But what
happens if the normal course of apoptosis in the
embryo is disturbed? During the last decade evidence
has accumulated that the majority of inborn birth
defects induced by developmental toxicants are real-
ized through distortions of the correct spatial and tem-
poral pattern of apoptosis.

ABNORMAL APOPTOSIS LEADS TO
ABNORMAL DEVELOPMENT

At present, between 3 and 6% of neonates have a
major congenital anomaly (52). The pathogenesis of
most of these anomalies is unknown. Nevertheless, it
has been known for many years that excessive death
of embryonic cells is one of the most important events
preceding the occurrence of structural anomalies,
regardless of their nature (53). Further studies have
revealed that the effect of most of chemical and physical
teratogens is associated with the induction of apoptosis
in target organs, e.g., maternal hyperthermia has been
shown to be a potent teratogen in experimental animals
(54) and is also teratogenic in humans (55). Embryos of
heat-shocked rodents exhibit anomalies such as exen-
cephaly, microcephaly, microphthalmia, etc. (54).
Hyperthermia has been shown to induce its teratogenic
effect by activating the apoptotic process in target
embryonic tissues. In rat embryos exposed to a terato-
genic dose of heat (56), DNA fragmentation (a hallmark
of apoptosis) was found as early as 2.5 hr after heat
shock. The increased number of apoptotic nuclei was
observed in the prosencephalic neuroepithelium in the
area encompassing the optic cup. Our studies (57) have
also demonstrated increased apoptosis in murine
embryos after exposure to a teratogenic dose of heat.
FACS analysis has shown an accumulation of apoptotic
nuclei which reaches a maximum by 19 hr and declines
by 24 hr after heating.
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Apoptosis is also involved in the formation of struc-
tural anomalies induced by DNA damaging teratogens
such as ionizing radiation and alkylating agents (58).
Studies performed in our laboratory have demonstrated
a strong correlation between the degree of apoptosis
in target organs such as the limbs and the head and the
severity of limb and craniofacial anomalies in embryos
treated with cyclophosphamide (59).

Retinoic acid (RA) is necessary for normal embry-
onic development (60). However, retinoids also have
a teratogenic potential [e.g., accutane (13-cis-RA),
which is used for treating acne, is a human teratogen].
In the embryos of mothers treated with teratogenic
doses of retinoids, the increased apoptosis in the neural
crest cells and in cells located in the limbs correlated
with the incidence of neural tube defects and limb
malformations (49). Vitamin A-deficient embryos also
exhibit a wide spectrum of anomalies and the spectra
of malformations caused by retinoid deficiency and
excess overlap. Accordingly, excessive apoptotic cell
death of neural crest cells was also observed in the
embryos of females deprived of adequate retinoids.
(61).

Finally, diabetes-induced teratogenesis has also been
associated with distortions in the regulation of
apoptosis in the embryo. The occurrence of neural
tube defects in the embryos of streptozotocin-induced
diabetic mice correlated with an increased concentra-
tion of apoptotic cells in the mid- and hindbrains (62).
Apoptotic cellular changes and overexpression of Bax
(a death-promoting member of the Bcl-2 family of
proteins) have been reported in blastocysts of diabetic
mice (63). Maternal diabetes was accompanied by an
increased number of apoptotic yolk sac cells. This
effect may be responsible for the resorption of severely
malformed embryos (64).

MODIFICATION OF APOPTOTIC PROCESS
IN EMBRYO MAY INCREASE ITS
RESISTANCE TO TERATOGENS

The above data suggest that apoptosis triggered by
teratogens may be one of the basic mechanisms respon-
sible for the formation of structural anomalies. Apop-
totic cell death is an active process regulated by
different genes in a tissue (cell)-dependent fashion.
Therefore, new opportunities will arise to investigate
the embryo’s response to teratogens and to modulate
sensitivity to developmental toxicants.

Thus, it has long been known that maternal nutri-
tional deficiencies and excesses and metabolic and
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endocrine imbalances may not only result in the occur-
rence of malformed offspring but also modify the
embryo’s response to external teratogens (65). Mecha-
nistic studies have revealed that maternal factors may
modify the teratogenic response by influencing mater-
nal metabolism of a teratogen or its placental transfer
toward the embryo (65). Besides, evidence is begin-
ning to accumulate that maternal factors may also be
involved in the regulation of apoptosis induced by
teratogens in embryonic cells. Thus, we (66) have
shown that a manipulation of the maternal immune
system significantly changes the incidence of malfor-
mations induced by the DNA-damaging teratogen—
cyclophosphamide. Stimulation of maternal immune
responses also has a protective effect against other
teratogens and factors inducing embryonic death such
as X-rays, urethane, and N-methyl-N-nitrosourea (67),
the bacterial lipopolysaccharide (68), and restraining
and ultrasonic stresses (69). Our recent studies have
shown that immunostimulation significantly decreases
the number of litters with malformed embryos in strep-
tozotozin-induced diabetic mice (70) and increases the
resistance of murine embryos to the teratogenic insult
induced by heat shock (57).

Further studies have shown that teratogenic insult
induced by cyclophosphamide, heat shock, or diabetes
mellitus was associated with massive apoptosis in
embryonic organ systems (66) and that immunopoten-
tiation of female mice increases the resistance of
murine embryos to induced teratogenesis and results
in decreased apoptosis in target organ systems (71).

The precise mechanisms whereby maternal immune
responses may influence the apoptogenic process in
embryonic cells remain to be elucidated. It has been
observed (72) that induced apoptosis in embryos fol-
lowed by the formation of craniofacial anomalies was
accompanied by the accumulation of tumor necrosis
factor-a (TNF-a) mRNA, TNF-a protein, and TNF-
o receptor (TNFRI) mRNA in cells situated in target
embryo organ systems. Immunopotentiation of females
while decreasing a level of induced apoptosis in cells
was also followed by a clear decrease in the level of
TNF-a mRNA and TNF-a protein (72).

Maternal immunostimulation has been shown to
modify the expression of TNF-a and cytokines such
as TGFB2 and CSF-1 at the fetomaternal interface of
mice with an increased level of spontaneous and
induced postimplantation pregnancy loss. Immunosti-
mulation induced decreased expression of TNF-a (73)
and increased the expression of TGFB2 (74) at the
fetomaternal interface. This cytokine pattern was
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accompanied by the improvement in their reproduc-
tive performance.

The above findings indicate that modification of the
maternal immune response may be a powerful factor
modifying the embryo’s resistance to various develop-
mental toxicants and suggest that its effect is realized by
alterations in the apoptotic machinery. The question to
be asked is what other means may be used to modify
apoptotic response? One of the approaches may be real-
ized by a variety of inhibitors of some key molecules
involved in apoptotic machinery, e.g., blockers of main
caspases. Therefore, further studies of the apoptotic
mechanisms underlying this phenomenon and a search
for agents capable of modifying some of the steps in the
apoptogenic pathways might lead to new methods to
prevent teratogen-induced birth defects.
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