Skip to main content
Log in

Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ultra high molecular weight polyethylene (UHMWPE) crosslinked by organosilane was thermal compression molded. The organosilane used was the tri-ethyloxyl vinyl silane. Its gelation, melting behavior, crystallinity, mechanical and wear-resisting properties were systematically investigated. The results showed that the gel ratio of UHMWPE increases with the incorporation of organosilane. At a low content of organosilane, the melting point and crystallinity of the crosslinked UHMWPE increase, and hence the mechanical and wear-resisting properties are improved. However, at a high content of organosilane, these performances of the crosslinked UHMWPE become worse. At 0.4 phr silane, the wear resistance of crosslinked UHMWPE reaches its optimum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Charnley, in “Low friction arthroplasty of the hip: Theory and Practice” (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  2. E. C. Y. Ching, W. K. Y. Poon, R. K. Y. Li and Y. W. Mai, Polym. Eng. Sci. 40 (2000) 2558.

    Google Scholar 

  3. P. H. Kang and Y. C. Nho, Radiat Phys. Chem. 60 (2001) 79.

    Google Scholar 

  4. M. Deng and S. W. Shalby, Biomat. 18 (1997) 645.

    Google Scholar 

  5. J. Suwanprateeb, J. Appl. Polym. Sci. 75 (2000) 1503.

    Google Scholar 

  6. C. Z. Liu, L. Q. Ren, J. Tong, T. J. Joyce, S. M. Green and R. D. Arnell, Wear 249 (2001) 31.

    Google Scholar 

  7. H. Fujita, K. Ido, Y. Matsuda, H. Iida, M. Oka, Y. Kitamura and T. Naskamura, J. Biomed. Mater. Res. 49 (2000) 273.

    Google Scholar 

  8. L. Que and L. D. T. Topoleski, Polym. Eng. Sci. 50 (2000) 322.

    Google Scholar 

  9. O. Breuer, A. Tzur, M. Narkis and A. Siegmann, J. Appl Polym. Sci. 74 (1999) 1731.

    Google Scholar 

  10. N. Chang, A. Bellare, R. E. Cohen and M. Spector, Wear 241 (2000) 109.

    Google Scholar 

  11. O. N. Tretinnikov, S. Ogata and Y. Ikada, Polymer 39 (1998) 6115.

    Google Scholar 

  12. R. M. Gul, Eur. Polym. J. 35 (1999) 2001.

    Google Scholar 

  13. F. W. Shen, H. A. Mckellop and R. Salovey, J. Biomed. Mater. Res. 40 (1998) 71.

    Google Scholar 

  14. M. Goldman and L. Pruitt, J. Biomed. Mater. Res. 40 (1998) 378.

    Google Scholar 

  15. O. K. Muratoglu, C. R. Bragdon, D. O. O'Connor, M. Jasty, W. H. Harris, R. Gul and F. Mcgarry, Biomat. 20 (1999) 1463.

    Google Scholar 

  16. H. Marrs, D. C. Barton, R. A. Jones, I. M. Ward and J. Fisher, J. Mater. Sci. Mater. M. 10 (1999) 333.

    Google Scholar 

  17. V. Permnath, A. Bellare, E. W. Merrill, M. Jasty and W. H. Harris, Polymer 40 (1999) 2215.

    Google Scholar 

  18. S. Andjejic and R. E. Richard, Macromolecules 34 (2001) 896.

    Google Scholar 

  19. H. Dong, T. Bell, C. Blawert and B. L. Mordike, J. Mater. Sci. Lett. 19 (2000) 1147.

    Google Scholar 

  20. D. A. Baker, R. S. Hastings and L. Pruitt, Polymer 41 (2000) 795.

    Google Scholar 

  21. G. Lewis, Biomat. 22 (2001) 371.

    Google Scholar 

  22. A. J. Peacock, “Handbook of Polyethylene: Structures, Properties, and Applications” (Marcel Dekker Inc., New York, 2000).

    Google Scholar 

  23. J. R. Atkinson and R. Z. Cicek, Biomat. 24 (1983) 267.

    Google Scholar 

  24. B. Wunderlich and C. M. Cormier, J. Polym. Sci. 5 Part A-2 (1967) 987.

    Google Scholar 

  25. P. Hu, Y. X. Lu and Q. Zhan, Plastics 19(4) (1990) 11.

    Google Scholar 

  26. S. K. Bhateja, Polymer 23 (1982) 654.

    Google Scholar 

  27. M. Deng and W. S. Shalaby, J. Appl. Polym. Sci. 58 (1995) 2111.

    Google Scholar 

  28. J. D. Hoffman, G. T. Davis and J. I. Lauritzen Jr. in “Treatise on Solid State Chemistry”, Vol. 3 edited by N. B. Hannay (Plenum Press, New York, 1976).

    Google Scholar 

  29. V. A. Bely, A. I. Sviridenok, M. I. Petrokovets and V. G. Savkin, in “Friction and Wear in Polymer-Based Materials”, translated by P. Granville-Jackson (Pergamon Press, Oxford, 1982).

    Google Scholar 

  30. R. J. Wu, in “Surface and Interface of Polymer” (Academic Press, Beijing, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, C.Y., Xie, X.L., Wu, X.C. et al. Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane. Journal of Materials Science: Materials in Medicine 13, 1065–1069 (2002). https://doi.org/10.1023/A:1020352923972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020352923972

Keywords

Navigation