Skip to main content
Log in

Evaluation of Strategies for the Intracellular Delivery of Proteins

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The intracellular delivery of functionally active proteins represents an important emerging strategy for laboratory investigation and therapeutic applications. Although a number of promising approaches for protein delivery have been developed, thus far there has been no attempt to compare the merits of the various delivery technologies. This issue is addressed in the current study.

Methods. In this study we utilize a sensitive luciferase reporter gene assay to provide unambiguous and quantitative evaluation of several strategies for the intracellular delivery of a biologically active protein comprised of the Gal4 DNA binding domain and the VP16 transactivating domain.

Results. Both a cationic lipid supramolecular complex and a polymeric complex were able to effectively deliver the chimeric transcription factor to cultured cells. In addition, protein chimeras containing the Tat cell penetrating peptide, but not those containing the VP22 peptide, were somewhat effective in delivery.

Conclusions. Both supramolecular protein-carrier complexes and protein chimeras with certain cell penetrating peptides can support intracellular delivery of proteins. In the cell culture setting the supramolecular complexes are more effective, but their large size may present problems for in vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. R. Schwarze and S. F. Dowdy. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci. 21:45–48 (2000).

    Google Scholar 

  2. M. Lindgren, M. Hallbrink, A. Prochiantz, and U. Langel. Cell-penetrating peptides. Trends Pharmacol. Sci. 21:99–103 (2000).

    Google Scholar 

  3. E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010–16017 (1997).

    Google Scholar 

  4. M. A. Chellaiah, N. Soga, S. Swanson, S. McAllister, U. Alvarez, D. Wang, S. F. Dowdy, and K. A. Hruska. Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J. Biol. Chem. 275:11993–12002 (2000).

    Google Scholar 

  5. N. A. Lissy, P. K. Davis, M. Irwin, W. G. Kaelin, and S. F. Dowdy. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407:642–645 (2000).

    Google Scholar 

  6. A. M. Vocero-Akbani, N. V. Heyden, N. A. Lissy, L. Ratner, and S. F. Dowdy. Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat. Med. 5:29–33 (1999).

    Google Scholar 

  7. S. R. Schwarze, A. Ho, A. Vocero-Akbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 (1999).

    Google Scholar 

  8. G. Elliott and P. O'Hare. Intercellular trafficking and protein delivery by a herpes virus structural protein. Cell 88:223–233 (1997).

    Google Scholar 

  9. A. Phelan, G. Elliott, and P. O'Hare. Intercellular delivery of functional p53 by the herpes virus protein VP22. Nat. Biotechnol. 16:440–443 (1998).

    Google Scholar 

  10. M. S. Dilber, A. Phelan, A. Aints, A. J. Mohamed, G. Elliott, C. I. Smith, and P. O'Hare. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Ther. 6:12–21 (1999).

    Google Scholar 

  11. B. Fang, B. Xu, P. Koch, and J. A. Roth. Intercellular trafficking of VP22-GFP fusion proteins is not observed in cultured mammalian cells. Gene Ther. 5:1420–1424 (1998).

    Google Scholar 

  12. D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271:18188–18193 (1996).

    Google Scholar 

  13. M. Pooga, U. Soomets, M. Hallbrink, A. Valkna, K. Saar, K. Rezaei, U. Kahl, J. X. Hao, X. J. Xu, Z. Wiesenfeld-Hallin, T. Hokfelt, T. Bartfai, and U. Langel. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16:857–861 (1998).

    Google Scholar 

  14. A. Astriab-Fisher, D. S. Sergueev, M. Fisher, B. R. Shaw, and R. L. Juliano. Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem. Pharmacol. 60:83–90 (2000).

    Google Scholar 

  15. S. Calvet, P. Doherty, and A. Prochiantz. Identification of a signaling pathway activated specifically in the somatodendritic compartment by a heparin sulfate that regulates dendrite growth. J. Neurosci. 18:9751–9765 (1998).

    Google Scholar 

  16. M. Rojas, J. P. Donahue, and Z. Tan. and Y. Z. Lin. Genetic engineering of proteins with cell membrane permeability. Nat. Biotechnol. 16:370–375 (1998).

    Google Scholar 

  17. M. Chang, L. Zhang, J. P. Tam, and E. Sanders-Bush. Dissecting G protein-coupled receptor signaling pathways with membrane-permeable blocking peptides. Endogenous 5-HT(2C) receptors in choroid plexus epithelial cells. J. Biol. Chem. 275:7021–7029 (2000).

    Google Scholar 

  18. J. Hawiger. Noninvasive intracellular delivery of functional peptides and proteins. Curr. Opin. Chem. Biol. 3:89–94 (1999).

    Google Scholar 

  19. X. H. Liu, J. C. Castelli, and R. J. Youle. Receptor-mediated uptake of an extracellular Bcl-x(L) fusion protein inhibits apoptosis. Proc. Natl. Acad. Sci. U.S.A. 96:9563–9567 (1999).

    Google Scholar 

  20. O. Zelphati, Y. Wang, S. Kitada, J. C. Reed, P. L. Felgner, and J. Corbeil. Intracellular delivery of proteins with a new lipidmediated delivery system. J. Biol. Chem. 276:35103–35110 (2001).

    Google Scholar 

  21. J. H. Tinsley, J. Hawker, and Y. Yuan. Efficient protein transfection of cultured coronary venular endothelial cells. Am. J. Physiol. 275:H1873–1878 (1998).

    Google Scholar 

  22. M. J. Poznansky and R. L. Juliano. Biologic approaches to the controlled delivery of drugs: a critical review. Pharmacol. Rev. 36:277–336 (1984).

    Google Scholar 

  23. Y. Xu and F. C. Szoka, Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35:5616–5623 (1996).

    Google Scholar 

  24. A. Prochiantz. Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12:400–406 (2000).

    Google Scholar 

  25. S. R. Schwarze, K. A. Hruska, and S. F. Dowdy. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10:290–295 (2000).

    Google Scholar 

  26. A. Ho, S. R. Schwarze, S. J. Mermelstein, G. Waksman, and S. F. Dowdy. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 61:474–477 (2001).

    Google Scholar 

  27. S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276:5836–5840 (2001).

    Google Scholar 

  28. J. D. Baleja, R. Marmorstein, S. C. Harrison, and G. Wagner. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature 356:450–453 (1992).

    Google Scholar 

  29. P.M.Fischer, E. Krausz, and D.P. Lane. Cellular delivery of impermeable effector molecules in the form of conjugates with peptides capable of mediating membrane translocation. Bioconjugate Chem. 12:825–841 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Juliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, D., Xu, D., Singer, A.U. et al. Evaluation of Strategies for the Intracellular Delivery of Proteins. Pharm Res 19, 1302–1309 (2002). https://doi.org/10.1023/A:1020346607764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020346607764

Navigation