Skip to main content
Log in

PIXE micro-beam mapping of metals in human peri-implant tissues

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Previous investigations did not agree about the possible presence of titanium and other metals in the tissues around endosteal dental implants and joint prostheses. Indeed, while some authors reported diffusion of metals into the tissues, some others did not find evidence of this phenomenon. In the present study, four dental titanium implants, removed with the surrounding tissues from patients at various time intervals after the insertion, were studied by means of the micro-beam proton-induced X-ray emission (PIXE μ-beam) technique, which draws maps showing the tissue distribution of elements with a detection limit of about 1 ppm. One implant was built in commercially pure titanium, two others in titanium coated with titanium plasma spray, and the fourth in Ti–Al–V alloy. Their composition was confirmed by the PIXE μ-beam analyses. The removed samples were embedded in epoxy and processed with a cutting–grinding appliance, mounted on plastic holders, and ground up to a thickness of about 35 μm. Optical microscope examinations were also carried out, to compare the optical findings with the elemental maps obtained with the PIXE μ-beam. One implant, removed after 70 days because the patient had developed peri-implantitis, had some inflammatory soft tissue attached, with no evidence of metal leakage. The other three implants had been removed after 6, 7 and 9 years of valid clinical service, because of the fracture of the prosthetic abutment or the implant stem. At the optical microscope, all these fixtures were embedded in mature bone. The elemental maps indicated small titanium deposits in about 5% of the bone bordering the implants, while aluminum, when present in the fixture, leaked diffusely into the surrounding bone and vanadium was not found in the tissues. These results suggest that titanium may be found occasionally in peri-implantar tissues, but has very little tendency to spread, while the presence of aluminum in the implant alloy may cause an important leakage of this metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Driscoll, L. C. Deyo, J. M. Carter, B. W. Howard, D. G. Hassenbein and T. A. Bertram, Carcinogenesis 18 (1997) 423.

    Google Scholar 

  2. J. L. Chen and W. E. Fayerweather, J. Occup. Med. 12 (1988) 937.

    Google Scholar 

  3. W. E. Fayerweather, M. E. Karns, P. G. Gilby and J. L. Chen, ibid. 34 (1992) 164.

    Google Scholar 

  4. J. Y. Wang, B. H. Wicklund, R. B. Gustilo and D. T. Tsukayama, J. Orthop. Res. 15 (1997) 688.

    Google Scholar 

  5. N. C. Blumenthal and V. Cosma, J. Biomed. Mater. Res.:Applied Biomaterials 23A1 (1989) 23.

    Google Scholar 

  6. A. Bernstein, I. Bernauer, R. Marx and W. Geurtsen, Biomaterials 13 (1992) 98.

    Google Scholar 

  7. J. Edel, E. Marafante and E. Sabbioni, Hum. Toxicol. 4 (1985) 177.

    Google Scholar 

  8. T. RÖstlund, P. Thomsen, L. M. Bjursten and L. E. Ericson, J. Biomed. Mater. Res. 24 (1990) 847.

    Google Scholar 

  9. M. G. Hadfield, T. Adera, B. Smith, C. A. Fortner Burton and R. D. Gibb, J. Environ. Pathol. Toxicol. Oncol. 17 (1998) 1.

    Google Scholar 

  10. M. A. Khan, R. L. Williams and D. F. Williams, Biomaterials 20 (1999) 631.

    Google Scholar 

  11. M. A. Khan, R. L. Williams and D. F. Williams, ibid. 20 (1999) 765.

    Google Scholar 

  12. D. S. Jorgenson, J. A. Centeno, M. H. Mayer, M. J. Topper, P. C. Nossov, F. G Mullick and P. N. Manson, ibid. 20 (1999) 675.

    Google Scholar 

  13. T. M. Lee, E. Chang and C. Y. Yang, J. Mater. Sci. 10 (1999) 541.

    Google Scholar 

  14. A. B. Ferguson, Y. Akahoshi, P. G. Laing and E. S. Hodge, J. Bone Joint Surg. 44 (1962) 323.

    Google Scholar 

  15. G. Meachim and D. F. Williams, J. Biomed. Mat. Res. 7 (1973) 555.

    Google Scholar 

  16. J. F. Osborn, P. Willich and N. Meenen, in “Clinical Implant Material”, edited by G. Heimke, U. Soltesz and A. J. C. Lee, vol. 9 (Elsevier Science Publishers Amsterdam, 1990).

  17. A. M. Ektessabi, T. Otsuka, Y. Tsuboi, Y. Horino, Y. Mokuno, K. Fujii, T. Albrektson, L. Sennerby and C. Johansson, Nucl. Instr. Meth. B 109 (1996) 278.

    Google Scholar 

  18. J. J. Jacobs, A. K. Skipor, J. Black, R. M. Urban and J. O. Galante, J. Bone Joint Surg. Am. 73 (1991) 1475.

    Google Scholar 

  19. P. Ducheyne, G. Willems, M. Martens and J. Helsen, J. Biomed. Mat. Res. 18 (1984) 293.

    Google Scholar 

  20. J. L. Woodman, J. J. Jacobs, J. O. Galante and R. M. Urban, J. Orthop. Res. 1 (1984) 421.

    Google Scholar 

  21. H. Schliephake, G. Reiss, R. Urban, F. W. Neukam and S. Guckel, Int. J. Oral Maxillofac. Implants 8 (1993) 502.

    Google Scholar 

  22. H. Schliephake, H. Lehmann, U. Kunz and R. Schmelzeisen, Int. J. Oral Maxillofac. Surg. 22 (1993) 20.

    Google Scholar 

  23. D. Weingart, S. Steinemann, W. Schilli, J. R. Strub, U. Hellerich, J. Assenmacher and J. Simpson, ibid. 23 (1994) 450.

    Google Scholar 

  24. J. J. Jacobs, A. K. Skipor, L. M. Patterson, N. J. Hallab, W. G. Paprosky, J. Black and J. O. Galante, J. Bone Joint Surg. Am 80 (1998) 1447.

    Google Scholar 

  25. S. J. Lugowsky, D. C. Smith, A. D. Mc Hugh and J. C. Van Loon, J. Biomed. Mater. Res. 25 (1991) 1443.

    Google Scholar 

  26. D. Rodriguez, F. J. Gil, J. A. Planell, E. Jorge, L. Alvarez, R. Garcia, M. Larrea and A. Zapata, J. Mater. Sci. Mater. Med. 10 (1999) 847.

    Google Scholar 

  27. P. D. Bianco, P. Ducheyne and J. M. Cuckler, Biomaterials 17 (1996) 1937.

    Google Scholar 

  28. P. D. Bianco, P. Ducheyne and J. M. Cuckler, J. Mater. Sci. Mater. Med. 8 (1997) 525.

    Google Scholar 

  29. P. D. Bianco, P. Ducheyne and J. M. Cuckler, J. Biomed. Mater. Res. 6 (1996) 1937.

    Google Scholar 

  30. M. Browne and P. J. Gregson, Biomaterials 21 (2000) 385.

    Google Scholar 

  31. C. Struys Ponsar, O. Guillard and P. Van Den Bosch De Aguilar, Exp Neurol. 163 (2000) 157.

    Google Scholar 

  32. S. Mahieu, M. Del Carmen Contini, M. Gonzales, N. Millen and M. M. Elias, Toxicol. Lett 111 (2000) 235.

    Google Scholar 

  33. R. M. Urban, J. J. Jacobs, M. J. Tomlinson, J. Gavrilovic, J. Black and M. Peoch, J. Bone Joint Surg. Am. 82 (2000) 457.

    Google Scholar 

  34. Y. Mu, T. Kobayashi, M. Sumita, A. Yamamoto and T. Hanawa, J. Biomed. Mater. Res. 49 (2000) 238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Passi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passi, P., Zadro, A., Galassini, S. et al. PIXE micro-beam mapping of metals in human peri-implant tissues. Journal of Materials Science: Materials in Medicine 13, 1083–1089 (2002). https://doi.org/10.1023/A:1020309108950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020309108950

Keywords

Navigation