Skip to main content
Log in

DNA Polymorphism in Population Genetics

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In the review, the literature evidence on DNA polymorphism obtained in the last 10–15 years using various molecular-genetic methods is summarized. All main types of DNA variation are considered but attention is focused on those extensively used in population genetics. The areas of using DNA markers are outlined and the limitations of their potential in analyzing genetic processes in populations are discussed. Particular emphasis is placed on the relationship between the earlier developed biochemical genetics based on protein polymorphism analysis and modern molecular population genetics based on DNA polymorphism. The possible role of selection in maintaining DNA variation is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Altukhov, Yu.P., Korochkin, L.I., and Rychkov, Yu.G., Genetic Biochemical Diversity in Evolution and Individual Development, Genetika (Moscow), 1996, vol. 32, no. 11, pp. 1450-1473.

    Google Scholar 

  2. Rychkov, Yu.G., Zhukova, O.V., Sheremet'eva, V.A., et al., Genofond i genogeografiya narodonaseleniya (Gene Pool and Gene Geography of Population: 1. Gene Pool of Populations of Russia and Contiguous Countries), Rychkov, Yu.G., Ed., St. Petersburg: Nauka, 2001.

    Google Scholar 

  3. Manchenko, G.H., Handbook of Detection of Enzymes on Electrophoretic Gels, Boca Raton: CRC, 1994.

    Google Scholar 

  4. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Nauka, 1983.

    Google Scholar 

  5. Sozinov, A.A., Polimorfizm belkov i ego znachenie v genetike i selektsii (Protein Polymorphism and Its Importance for Genetics and Breeding), Moscow: Nauka, 1985.

    Google Scholar 

  6. Nevo, E., Beiles, A., and Ben-Shlomo, R., The Evolutionary Significance of Genetic Diversity: Ecological, Demographic, and Life-History Correlates, Evolutionary Dynamics of Genetic Diversity, Mani, G.S., Ed., Berlin: Springer-Verlag, 1984, pp. 13-213.

    Google Scholar 

  7. Ward, R.D., Skibinski, D.O.F., and Woodwark, M., Protein Heterozygosity, Protein Structure and Taxonomic Differentiation, Evolutionary Biology, Hecht, M.K., et al., Eds., New York: Plenum, 1992, vol. 26, pp. 73-159.

    Google Scholar 

  8. Altukhov, Yu.P., Intraspecific Genetic Diversity: Monitoring and Principles of Conservation, Genetika (Moscow), 1995, vol. 31, no. 10, pp. 1331-1357.

    Google Scholar 

  9. Altukhov, Yu.P., Salmenkova, E.A., and Omel'chenko, V.T., Populyatsionnaya genetika lososevykh ryb (Population Genetics of Salmonids), Moscow: Nauka, 1997.

    Google Scholar 

  10. Allendorf, F.W. and Seeb, L.W., Concordance of Genetic Divergence among Sockeye Salmon Populations at Allozyme, Nuclear, DNA, and Mitochondrial DNA Markers, Evolution, 2000, vol. 54, no. 2, pp. 640-651.

    Google Scholar 

  11. Beaumout, M.A. and Nichols, R.A., Evaluating Loci for Use in the Genetic Analysis of Population Structure, Proc. R. Soc. London, B, 1996, vol. 263, pp. 1619-1626.

    Google Scholar 

  12. Hedrick, P.W., Highly Variable Loci and Their Interpretation in Evolution and Conservation, Evolution, 1999, vol. 53, no. 2, pp. 313-318.

    Google Scholar 

  13. Vogel, F. and Motulsky, A.G., Human Genetics: Problems and Approaches, Berlin: Springer-Verlag, 1997, 3rd ed.

    Google Scholar 

  14. Southern, E.M., Detection of Specific DNA Fragments Separated by Gel Electrophoresis, J. Mol. Biol., 1975, vol. 98, pp. 503-517.

    Google Scholar 

  15. Jeffreys, A.J., Royle, N.J., Wilson, V., and Wong, Z., Spontaneous Mutation Rates to New Length Alleles at Tandem Repetitive Hypervariable Loci in Human DNA, Nature, 1988, vol. 332, pp. 278-281.

    Google Scholar 

  16. Wright, J., DNA Fingerprinting in Fishes, Biochemistry and Molecular Biology of Fishes, Hochachka, P. and Mommsen, T., Eds., Amsterdam: Elsevier, 1993, vol. 2, pp. 57-91.

    Google Scholar 

  17. Jin, L. and Chakraborty, R., Estimation of Genetic Distance and Coefficient of Gene Diversity from Single-Probe Multilocus DNA Fingerprinting Data, Mol. Biol. Evol., 1994, vol. 11, pp. 12-127.

    Google Scholar 

  18. Lynch, M., The Similarity Index and DNA Fingerprinting, Mol. Biol. Evol. 1990, vol. 7, pp. 478-484.

    Google Scholar 

  19. Bentzen, P., Harris, A.S., and Wright, J.M., Cloning of Hypervariable Minisatellite and Simple Sequence Microsatellite Repeats for DNA Fingerprinting of Important Aquacultural Species of Salmonids and Tilapia, DNA Fingerprinting Approaches and Applications, Burke, T., Dolf, G., Jeffreys, A.J., and Wolf, R., Eds., Birkhauser, 1991, pp. 243-262.

  20. Heath, D.D., Iwama, G.K., and Delvin, R.H., DNA Fingerprinting Used to Test for Family Effects on Precocious Sexual Maturation in Two Populations of Oncorhynchus tshawytscha (Chinook Salmon), Heredity 1994, vol. 73, pp. 616-624.

    Google Scholar 

  21. Prodohl, P.A., Taggart, J.B., and Ferguson, A., Single Locus Minisatellite Variation in Brown Trout, Salmo trutta L., Populations, Genetics and Evolution of Aquatic Organisms, Beaumont, A.R., Ed., London: Chapman and Hall, 1994, pp. 263-270.

    Google Scholar 

  22. Taggart, J.B. and Ferguson, A., Hypervariable Minisatellite DNA Single Locus Probes for the Atlantic Salmon, Salmo salar L., J. Fish Biol., 1990, vol. 37, pp. 991-993.

    Google Scholar 

  23. Goldstein, D.B., Linares, A.R., and Cavalli-Sforza, L.L., An Evaluation of Genetic Distances for Use with Microsatellite Loci, Genetics 1995, vol. 139, pp. 463-471.

    Google Scholar 

  24. Slatkin, M., A Measure of Population Subdivision Based on Microsatellite Allele Frequencies, Genetics, 1995, vol. 139, pp. 457-462.

    Google Scholar 

  25. Zhivotovsky, L.A. and Feldman, M.W., Microsatellite Variability and Genetic Distance, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 11 549-11 552.

    Google Scholar 

  26. Mullis, K., Faloona, F., Scharf, S., et al., Specific Enzymatic Amplification of DNA in Vitro: The Polymerase Chain Reaction, Cold Spring Harbor Symp. Quant. Biol., 1986, vol. 51, pp. 263-273.

    Google Scholar 

  27. Saiki, R.K., Gelfand, D.H., Stoffel, S., et al., Primer-Directed Enzymatic Amplification of DNA with Thermostable DNA Polymerase, Science, 1988, vol. 239, pp. 487-491.

    Google Scholar 

  28. Datta, U., Datta, P., and Mandal, R.K., Cloning and Characterization of Highly Repetitive Fish Nucleotide Sequence, Gene 1988, vol. 62, pp. 331-336.

    Google Scholar 

  29. Kan, Y.W. and Dozy, A.M., Polymorphism of DNA Sequence Adjacent to the β-Globin Structural Gene: Its Relation to the sickle Mutation, Proc. Natl. Acad. Sci. USA, 1978, vol. 75, pp. 5631-5635.

    Google Scholar 

  30. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  31. Levinson, G. and Gutman, G.A., Slipped-Strand Mispairing: A Major Mechanism for DNA Sequence Evolution, Mol. Biol. Evol., 1987, vol. 4, pp. 2203-2221.

    Google Scholar 

  32. Jeffreys, A.J., Wilson, V., and Thein, S.L., Hypervariable “Minisatellite” Regions in Human DNA, Nature, 1985, vol. 316, pp. 67-73.

    Google Scholar 

  33. Jeffreys, A.J., Wilson, V., and Thein, S.L., Individual Specific “Fingerprints” of Human DNA, Nature, 1985, vol. 316, pp. 76-79.

    Google Scholar 

  34. Tautz, D., Hypervariability of Simple Sequences as a General Source for Polymorphic DNA Markers, Nucleic Acids Res., 1989, vol. 17, pp. 6463-6471.

    Google Scholar 

  35. Wright, J.M. and Bentzen, P., Microsatellites: Genetic Markers for the Future, Rev. Fish Biol. Fish., 1994, vol. 4, pp. 384-388.

    Google Scholar 

  36. Wright, J.M., Mutation at VNTRs: Are Minisatellites the Evolutionary Progeny of Microsatellites?, Genome 1994, vol. 37, pp. 345-347.

    Google Scholar 

  37. Armour, J.A.L., Alegre, S.A., Miles, S., et al., Minisatellites and Mutation Processes in Tandemly Repetitive DNA, Microsatellites. Evolution and Application, Goldstein, D.B. and Schlotterer, C., Eds., New York: Oxford Univ. Press, 1999, pp. 24-33.

    Google Scholar 

  38. Microsatellites: Evolution and Application Goldstein, D.B. and Schlotterer, C., Eds., New York: Oxford Univ. Press, 1999.

    Google Scholar 

  39. Estoup, A., Presa, P., Krieg, F., et al., (CT)n and (GT)n Microsatellites: A New Class of Genetic Markers for Salmo trutta L. (Brown Trout), Heredity, 1993, vol. 71, pp. 488-496.

    Google Scholar 

  40. Kashi, Y. and Soller, M., Functional Roles of Microsatellites and Minisatellites, Microsatellites: Evolution and Application, Goldstein, D.B. and Schlotterer, C., Eds., New York: Oxford Univ. Press, 1999, pp. 10-23.

    Google Scholar 

  41. Hancock, J.M., Microsatellites and Other Simple Sequences: Genomic Context and Mutational Mechanisms, Microsatellites: Evolution and Application, Goldstein, D.B. and Schlotterer, C., Eds., New York: Oxford Univ. Press, 1999, pp. 1-9.

    Google Scholar 

  42. Weber, J.L. and Wong, C., Mutation of Human Short Tandem Repeats, Hum. Mol. Genet., 1993, vol. 2, pp. 1123-1128.

    Google Scholar 

  43. Neel, J.V., Satoh, Ch., Goriki, K., et al., The Rate with Which Spontaneous Mutation Alters the Electrophoretic Mobility of Polypeptides, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 389-393.

    Google Scholar 

  44. Ward, R.D. and Grewe, P., Appraisal of Molecular Genetic Techniques in Fisheries, Rev. Fish Biol. Fish., 1994, vol. 4, pp. 300-325.

    Google Scholar 

  45. Huang, T., Cottingham, R., Ledbetter, D., and Zoghbi, H., Genetic Mapping of Four Dinucleotide Repeat Loci, DXS453, DXS458, DXS454 and DXS424 on the X Chromosome Using Multiplex Polymerase Chain Reaction, Genomics, 1992, vol. 13, pp. 375-380.

    Google Scholar 

  46. Zane, L., Bargelloni, L., and Patarnello, T., Strategies for Microsatellite Isolation: A Review, Mol. Ecol., 2002, vol. 11, no. 1, pp. 1-16.

    Google Scholar 

  47. DNA Markers: Protocols, Applications and Overviews, Caetano-Anolles, G. and Gresshoff, P.M., Eds., New York: Wiley, 1997.

    Google Scholar 

  48. Ward, R.D., Woodwark, M., and Skibinski, D.O.F., A Comparison of Genetic Diversity Levels in Marine, Freshwater and Anadromous Fishes, J. Fish. Biol., 1994, vol. 44, pp. 213-232.

    Google Scholar 

  49. Hughes, C.R. and Queller, D.C., Detection of Highly Polymorphic Microsatellite Loci in a Species with Little Allozyme Polymorphism, Mol. Ecol. 1993, vol. 2, pp. 131-137.

    Google Scholar 

  50. De Woody, J.A. and Avise, J.C., Microsatellite Variation in Marine, Freshwater and Anadromous Fishes Compared with Other Animals, J. Fish Biol. 2000, vol. 56, pp. 461-473.

    Google Scholar 

  51. Dufresne, F., Bourget, E., and Bernatchez, L., Differential Patterns of Spatial Divergence in Microsatellite and Allozyme Alleles: Further Evidence for Locus-Specific Selection in the Acorn Barnacle, Semibalanus balanoides?, Mol. Ecol., 2002, vol. 11, no. 1, pp. 113-124.

    Google Scholar 

  52. Balloux, F. and Lugon-Moulin, N., The Estimation of Population Differentiation with Microsatellite Markers, Mol. Ecol., 2002, vol. 11, pp. 155-165.

    Google Scholar 

  53. Shriver, M.D., Jin, L., Boerwinkle, L.E., et al., A Novel Measure of Genetic Distance for Highly Polymorphic Tandem Repeat Loci, Mol. Biol. Evol. 1995, vol. 12, pp. 914-920.

    Google Scholar 

  54. Zhivotovsky, L.A., A New Genetic Distance with Application to Constrained Variation at Microsatellite Loci, Mol. Biol. Evol., 1999, vol. 16, pp. 467-471.

    Google Scholar 

  55. Ruzzante, D.E., A Comparison of Several Measures of Genetic Distance and Population Structure with Micro-satellite Data: Bias and Sampling Variance, Can. J. Fish. Aquat. Sci., 1998, vol. 55, pp. 1-14.

    Google Scholar 

  56. Weir, B.S. and Cockerham, C.C., Estimating F-Statistics for the Analysis of Population Structure, Evolution, 1984, vol. 38, pp. 1358-1370.

    Google Scholar 

  57. Dubrova, Yu.E., Jeffreys, A.J., and Malashenko, A.M., Mouse Minisatellite Mutations Induced by Ionizing Radiation, Nat. Genet., 1993, vol. 5, pp. 92-94.

    Google Scholar 

  58. Dubrova, Yu.E., Nesterov, V.N., Krouchinsky, N.G., et al., Human Minisatellite Mutation Rate after the Chernobyl Accident, Nature, 1996, vol. 380, pp. 683-686.

    Google Scholar 

  59. Dubrova, Yu.E., Plumb, M., Brown, J., et al., Stage Specificity, Dose Response, and Doubling Dose for Mouse Minisatellite Germline Mutation Induced by Acute Radiation, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 6251-6255.

    Google Scholar 

  60. Ryskov, A.P., Multilocus DNA Fingerprinting in Population Genetic Studies of Biodiversity, Mol. Biol. (Moscow), 1999, vol. 33, no. 6, pp. 997-1011.

    Google Scholar 

  61. Fontaine, P.M., Dodson, J.J., Bernatchez, L., and Slettan, A., A Genetic Test of Metapopulation Structure in Atlantic Salmon (Salmo salar) Using Microsatellites, Can. J. Fish. Aquat. Sci., 1997, vol. 54, pp. 2434-2442.

    Google Scholar 

  62. Shaw, P.W., Turan, C., Wright, J.M., et al., Microsatellite DNA Analysis of Population Structure in Atlantic Herring (Clupea harengus), with Direct Comparison to Allozyme and mtDNA RFLP Analysis, Heredity, 1999, vol. 83, pp. 490-499.

    Google Scholar 

  63. Wirth, T. and Bernatchez, L., Genetic Evidence against Panmixia in the European Eel, Nature, 2001, vol. 409, pp. 1037-1040.

    Google Scholar 

  64. Banks, M.A., Rashbrook, V.K., Calavetta, M.J., et al., Analysis of Microsatellite DNA Resolves Genetic Structure and Diversity of Chinook Salmon (Oncorhynchus tshawytscha) in California's Central Valley, Can. J. Fish. Aquat. Sci., 2000, vol. 57, pp. 915-927.

    Google Scholar 

  65. Bernatchez, L., Dempson, J.B., and Martin, S., Microsatellite Gene Diversity Analysis in Anadromous Arctic Charr, Salvelinus alpinus, from Labrador, Canada, Can. J. Fish. Aquat. Sci., 1998, vol. 55, pp. 1264-1272.

    Google Scholar 

  66. Brunner, P.C., Douglas, M.R., and Bernatchez, L., Microsatellite and Mitochondrial DNA Assessment of Population Structure and Stocking Effects in Arctic Charr Salvelinus alpinus (Teliostei, Salmonidae) from Central Alpine Lakes, Mol. Ecol., 1998, vol. 7, pp. 209-223.

    Google Scholar 

  67. Primmer, C.R., Aho, T., Piironen, J., et al., Microsatellite Analysis of Hatchery Stocks and Natural Populations of Arctic Charr, Salvelinus alpinus, from the Nordic Region: Implications for Conservation, Hereditas (Lund, Swed.), 1999, vol. 130, pp. 277-289.

    Google Scholar 

  68. Burger, C.V., Scribner, K.T., Spearman, W.J., et al., Genetic Contribution of Three Introduced Life History of Sockeye Salmon to Colonization of Frazer Lake, Alaska, Can. J. Fish. Aquat. Sci. 2000, vol. 57, pp. 2096-2111.

    Google Scholar 

  69. Ruzzante, D.E., Hansen, M.M., and Meldrup, D., Distribution of Individual Inbreeding Coefficients, Relatedness and Influence of Stocking on Native Anadromous Brown Trout (Salmo trutta) Population Structure, Mol. Ecol., 2001, vol. 10, pp. 2107-2128.

    Google Scholar 

  70. Estoup, A. and Angers, B., Microsatellites and Minisatellites for Molecular Ecology: Theoretical and Empirical Considerations, Advances in Molecular Ecology: NATO Sciences Series, Carvalho, G.R., Ed., IOS Press, 1998, pp. 55-86.

  71. Luikart, G. and England, P.R., Statistical Analysis of Microsatellite DNA Data, Trends Ecol. Evol. 1999, vol. 14, pp. 253-256.

    Google Scholar 

  72. Paetkau, D., Calwert, W., Stirling, I., and Strobeck, C., Microsatellite Analysis of Population Structure in Canadian Polar Bears, Mol. Ecol., 1995, vol. 4, pp. 347-354.

    Google Scholar 

  73. Banks, M.A. and Eichert, W., WHICHRUN (Version 3.2): A Computer Program for Population Assignment of Individuals Based on Multilocus Genotype Data, J. Hered., 2000, vol. 91, pp. 87-89.

    Google Scholar 

  74. Hansen, M.M., Kenchington, E., and Nielsen, E., Assigning Individual Fish to Populations Using Microsatellite DNA Markers, Fish Fisheries, 2001, vol. 2, no. 2, pp. 93-112.

    Google Scholar 

  75. Ferguson, A., Molecular Genetics in Fisheries: Current and Future Perspectives, Molecular Genetics in Fisheries, Carvalho, G.R. and Pitcher, T.G., Eds., London: Chapman and Hall, 1995, pp. 111-115.

    Google Scholar 

  76. Mousseau, T.A., Ritland, K., and Heath, D.D., A Novel Method for Estimating Heritability Using Molecular Markers, Heredity, 1998, vol. 80, pp. 218-224.

    Google Scholar 

  77. Karp, A. and Edwards, K., DNA Markers: A Global Overview, DNA Markers: Protocols, Applications and Overview Caetano-Anolles, G. and Gressnoff, P.M., Eds., New York: Wiley, 1977, pp. 1-13.

    Google Scholar 

  78. Williams, J.G.K., Hanafey, M.K., Rafalski, J.A., and Tingey, S.V., Genetic Analysis Using Random Amplified Polymorphic DNA Markers, Methods in Enzymology, Wu, R., Ed., San Diego: Academic, 1993, pp. 704-740.

    Google Scholar 

  79. Mueller, U.G. and Wolfenbarger, L.L., AFLP Genotyping and Fingerprinting, Trends Ecol. Evol., 1999, vol. 14, pp. 389-394.

    Google Scholar 

  80. Krutovskii, K.V., Vollmer, S.S., Sorensen, F.C., et al., RAPD Genome Map of Douglas Fir, J. Hered., 1998, vol. 89, no. 3, pp. 197-205.

    Google Scholar 

  81. Schierwater, B., Ender, A., Schroth, W., et al., Arbitrarily Amplified DNA in Ecology and Evolution, DNA Markers: Protocols, Applications and Overview, Caetano-Anolles, G. and Gresshoff, P.M., Eds., New York: Wiley, 1997, pp. 313-330.

    Google Scholar 

  82. Paglia, G. and Morgante, M., PCR-Based Multiplex DNA Fingerprinting Techniques for the Analysis of Conifer Genomes, Mol. Breed., 1998, vol. 4, pp. 173-177.

    Google Scholar 

  83. Altukhov, Yu.P. and Abramova, A.B., Monomorphic Species-Specific DNA Detectable by the Polymerase Chain Reaction with Arbitrary Primers, Genetika (Moscow), 2000, vol. 36, no. 12, pp. 1674-1681.

    Google Scholar 

  84. Altukhov, Yu.P., On the Relationship of Monomorphism and Polymorphism of Hemoglobins in Fish Microevolution, Dokl. Akad. Nauk SSSR, 1969, vol. 189, no. 5, pp. 115-117.

    Google Scholar 

  85. Altukhov, Yu.P. and Rychkov, Yu.G., Genetic Monomorphism of Species and Its Biological Significance, Zh. Obshch. Biol., 1972, vol. 33, pp. 281-300.

    Google Scholar 

  86. Omel'chenko, V.T., Electrophoretic Analysis of Hemoglobin in Fish of the Russian Far East, Genetika (Moscow), 1974, vol. 10, no. 9, pp. 35-43.

    Google Scholar 

  87. Singer, M. and Berg, P., Genes and Genomes, Mill Valley, California Univ. Sci. Books, 1991.

    Google Scholar 

  88. Ferris, S.D. and Berg, W.J., The Utility of Mitochondrial DNA in Fish Genetics and Management, Population Genetics and Fishery Management, Ryman, N., and Utter, F., Eds., Seattle: Univ. of Washington Press, 1987, pp. 277-301.

    Google Scholar 

  89. Bentzen, P., Wright, J.M., Bryden, L.T., et al., Tandem Repeat Polymorphism in the Mitochondrial Control Region of Redfishes (Sebastes: Scorpaenidae), J. Hered., 1998, vol. 89, pp. 1-7.

    Google Scholar 

  90. Eyre-Walker, A., Do Mitochondrial Genomes Recombine in Humans?, Philos. Trans. R. Soc. London, B, 2000, vol. 355, pp. 1573-1580.

    Google Scholar 

  91. Wallis, G.P., Do Animal Mitochondrial Genomes Recombine?, Trends Ecol. Evol., 1999, vol. 14, pp. 209-210.

    Google Scholar 

  92. Nei, M. and Tajima, F., DNA Polymorphism Detectable by Restriction Endonucleases, Genetics 1981, vol. 105, pp. 207-217.

    Google Scholar 

  93. Moritz, C., Dowling, T.E., and Brown, W.M., Evolution of Animal Mitochondrial DNA: Relevance for Population Biology and Systematics, Annu. Rev. Ecol. Syst., 1987, vol. 18, pp. 269-292.

    Google Scholar 

  94. Van Hooft, W.F., Groen, A.F., and Prins, H.H.T., Phylogeography of the African Buffalo Based on Mitochondrial and Y-Chromosomal Loci: Pleistocene Origin and Population Expansion of the Cape Buffalo Subspecies, Mol. Ecol., 2002, vol. 11, pp. 267-279.

    Google Scholar 

  95. Wilkinson, G.S. and Ghapman, A.M., Length and Sequence Variation in Evening Bat D-Loop Mitochondrial DNA, Genetics, 1991, vol. 128, pp. 607-617.

    Google Scholar 

  96. Park, L.K., Brainard, M.A., Dingman, D.A., and Winans, G.A., Low Levels of Intraspecific Variation in the Mitochondrial DNA of Chum Salmon (Oncorhynchus keta), Mol. Mar. Biol. Biotechnol., 1993, vol. 2, no. 6, pp. 362-370.

    Google Scholar 

  97. Churikov, D., Matsuoka, M., Luan, X., et al., Assessment of Concordance among Genealogical Reconstructions from Various mtDNA Segments in Three Species of Pacific Salmon (Genus Oncorhynchus), Mol. Ecol., 2001, vol. 19, no. 9, pp. 2329-2339.

    Google Scholar 

  98. Brown, W.M., George, M., and Wilson, A.C., Rapid Evolution of Animal Mitochondrial DNA, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 1967-1971.

    Google Scholar 

  99. Ferris, S.D., Sage, R.D., Prager, E.M., et al., Mitochondrial DNA Evolution in Mice, Genetics, 1983, vol. 105, pp. 681-721.

    Google Scholar 

  100. Cann, R.L., Stoneking, M., and Wilson, A.C., Mitochondrial DNA and Human Evolution, Nature, 1987, vol. 325, pp. 31-36.

    Google Scholar 

  101. Harrison, R.G., Animal Mitochondrial DNA as a Genetic Marker in Population and Evolutionary Biology, Trends Ecol. Evol. 1989, vol. 4, pp. 6-11.

    Google Scholar 

  102. Horai, S., Hoyasaka, K., Kondo, R., et al., Recent African Origin of Modern Humans Revealed by Complete Sequences of Hominoid Mitochondrial DNAs, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 532-536.

    Google Scholar 

  103. Ingman, M., Kaessmann, H., Paabo, S., and Gyllensten, U., Mitochondrial Genome Variation and the Origin of Modern Humans, Nature, 2000, vol. 408, pp. 708-712.

    Google Scholar 

  104. Avise, J.C., Molecular Markers, Natural History and Evolution, New York: Chapman and Hall, 1994.

    Google Scholar 

  105. Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, Ma: Harvard Univ. Press, 2000.

    Google Scholar 

  106. Bernatchez, L. and Wilson, C.C., Comparative Phylogeography of Nearctic and Palearctic Fishes, Mol. Ecol., 1998, vol. 7, pp. 431-452.

    Google Scholar 

  107. Billington, N. and Hebert, P.D.H., Mitochondrial DNA Diversity of Fishes and Its Implications for Introductions, Can. J. Fish. Aquat. Sci., 1991, vol. 48, suppl. 1, pp. 80-94.

    Google Scholar 

  108. Wayne, R.K. and Jenks, S.M., Mitochondrial DNA Analysis Supported Extensive Hybridization of the Endangered Wolf (Canis rufus), Nature, 1991, vol. 351, pp. 565-568.

    Google Scholar 

  109. Wilson, C.C. and Bernatchez, L., The Ghost of Hybrid Past: Fixation of Arctic Charr (Salvelinus alpinus) Mitochondrial DNA in Introgressed Population of Lake Trout (S. namaycush), Mol. Ecol., 1998, vol. 7, pp. 127-132.

    Google Scholar 

  110. Felsenstein, J., PHYLIP (Phylogeny Inference Package), Version 3.4, Department of Genetics, SK-540 Seattle: Washington Univ., 1992.

    Google Scholar 

  111. Schneider, S., Roessli, D., and Excoffier, L., Arlequin: A Software for Population Genetics Data Analysis, Ver. 2000, Geneva: Univ. of Geneva, 2000.

    Google Scholar 

  112. Excoffier, L., Smouse, P.E., and Quattro, J.M., Analyses of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data, Genetics, 1992, vol. 131, pp. 479-491.

    Google Scholar 

  113. Cavalli-Sforza, L.L., The DNA Revolution in Population Genetics, Trends Genet., 1998, vol. 14, no. 2, pp. 60-65.

    Google Scholar 

  114. Santos, F. and Tyler-Smith, C., Reading the Human Y-Chromosome: Emerging DNA Markers and Human Genetic History, Braz. J. Genet., 1996, vol. 18, pp. 669-672.

    Google Scholar 

  115. Jobling, M.A. and Tyler-Smith, C., New Uses for New Haplotypes: The Human Y Chromosome, Disease and Selection, Trends Genet., 2000, vol. 16, no. 8, pp. 356-362.

    Google Scholar 

  116. Underhill, P.A., Shen, P., Lin, A.A., et al., Y Chromosome Sequence Variation and the History of Human Populations, Nat. Genet., 2000, vol. 26, pp. 358-361.

    Google Scholar 

  117. Hammer, M., A Recent Insertion of an Alu Element on the Y Chromosome Is a Useful Marker for Human Population Studies, Mol. Biol. Evol., 1994, vol. 11, pp. 749-761.

    Google Scholar 

  118. Underhill, P.A., Jin, L., Zemans, R., et al., A Pre-Columbian Y Chromosome-Specific Transition and Its Implications for Human Evolutionary History, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 196-200.

    Google Scholar 

  119. Seielstad, M.T., Minch, E., and Cavalli-Sforza, L.L., Genetic Evidence for a Higher Female Migration Rate in Humans, Nat. Genet., 1998, vol. 20, pp. 278-280.

    Google Scholar 

  120. Ota, H., Settheetham-Ishida, W., Tiwawech, D., et al., Human mtDNA and Y-Chromosome Variation Is Correlated with Matrilocal versus Patrilocal Residence, Nat. Genet., 2001, vol. 29, pp. 20-21.

    Google Scholar 

  121. Sinclair, A.H., Berta, P., Palmer, M.S., et al., A Gene From the Human Sex-Determining Region Encodes a Protein with Homology to a Conserved DNA-Binding Motif, Nature, 1990, vol. 346, pp. 240-244.

    Google Scholar 

  122. Lahn, B.T. and Page, D.C., Functional Coherence of the Human Y Chromosome, Science, 1997, vol. 278, pp. 675-680.

    Google Scholar 

  123. Gibson, G., Microarrays in Ecology and Evolution: A Preview, Mol. Ecol., 2002, vol. 11, no. 1, pp. 17-24.

    Google Scholar 

  124. Wang, D.G., Fan, J.-B., Siao, C.J., et al., Large-Scale Identification: Mapping and Genotyping of Single-Nucleotide Polymorphism in the Human Genome, Science, 1998, vol. 280, pp. 1077-1082.

    Google Scholar 

  125. Cargill, M., Altshuler, D., Ireland, J., et al., Characterization of Single-Nucleotide Polymorphism in Coding Regions of Human Genes, Nat. Genet., 1999, vol. 22, pp. 231-238.

    Google Scholar 

  126. Halushka, M.K., Fan, J.-B., Bentley, K., et al., Pattern of Single-Nucleotide Polymorphism in Candidate Genes for Blood-Pressure Homeostasis, Nat. Genet., 1999, vol. 22, pp. 239-247.

    Google Scholar 

  127. Lander, E.S., The New Genomics: Global Views of Biology, Science, 1996, vol. 274, pp. 536-539.

    Google Scholar 

  128. Przeworski, M., Hudson, R.R., and Di Rienzo, A., Adjusting the Focus on Human Variation, Trends Genet., 2000, vol. 16, no. 7, pp. 282-290.

    Google Scholar 

  129. Krutovskii, K.V. and Neale, D.B., Forest Genomics for Conserving Adaptive Genetic Diversity, Forest Genetics Resources: Working Papers, Rome: Forest Resources Dev. Serv., 2001.

    Google Scholar 

  130. Wolfsberg, T.G. and Landsman, D., A Comparison of Expressed Sequence Tags (ESTs) to Human Genomic Sequences, Nucleic Acids Res., 1997, vol. 26, pp. 1626-1632.

    Google Scholar 

  131. Chakravarti, A., Population Genetics-Making Sense out of Sequence, Nat. Genet., 1999, vol. 21, pp. 56-60.

    Google Scholar 

  132. Singer, M.F., SINEs and LINEs: Highly Repeated Short and Long Interspersed Sequences in Mammalian Genomes, Cell (Cambridge, Mass.), 1982, vol. 28, pp. 433-434.

    Google Scholar 

  133. Rogers, J.H., The Origin and Evolution of Retroposons, Int. Rev. Cytol., 1985, vol. 93, pp. 187-279.

    Google Scholar 

  134. Okada, N., SINEs: Short Interspersed Repeated Elements of the Eukaryotic Genome, Trends Ecol. Evol., 1991, vol. 6, pp. 358-361.

    Google Scholar 

  135. Kocher, T.D., Thomas, W.K., Meyer, A., et al., Dynamics of Mitochondrial DNA Evolution in Animals: Amplification and Sequencing with Conserved Primers, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6196-6200.

    Google Scholar 

  136. Saccone, C., Pesole, G., and Sbisa, E., The Main Regulatory Region of Mammalian Mitochondrial DNA: Structure-Function Model and Evolutionary Pattern, J. Mol. Evol., 1991, vol. 33, pp. 83-91.

    Google Scholar 

  137. Bielawski, J.P. and Gold, J.R., Unequal Synonymous Substitution Rate within and between Two Protein-Coding Mitochondrial Genes, Mol. Biol. Evol., 1996, vol. 13, pp. 889-892.

    Google Scholar 

  138. Wise, C.A., Sraml, M., and Easteal, S., Departure from Neutrality at the Mitochondrial NADP Dehydrogenase Subunit 2 Gene in Humans, but Not in Chimpanzees, Genetics, 1998, vol. 148, pp. 400-421.

    Google Scholar 

  139. Chinnery, P.F. and Turnbull, D.M., Mitochondrial DNA Mutations in the Pathogenesis of Human Diseases, Mol. Med. Today, 2000, vol. 6, pp. 425-432.

    Google Scholar 

  140. Rand, D.M., Endotherms, Ectotherms and Mitochondrial Genome-Size Variation, J. Mol. Evol. 1993, vol. 37, pp. 281-295.

    Google Scholar 

  141. Blier, P.U., Dufresne, F., and Burton, R.S., Natural Selection and the Evolution of mtDNA-Encoded Peptides: Evidence for Intergenomic Co-Adaptation, Trends Genet., 2001, vol. 17, no. 7, pp. 400-406.

    Google Scholar 

  142. Kimura, M., Genetic Variability Maintained in a Finite Population Due to Mutational Production of Neutral and Nearly Neutral Isoalleles, Genet. Res., 1968, vol. 11, pp. 247-269.

    Google Scholar 

  143. King, J.L. and Jukes, T.H., Non-Darwinian Evolution: Random Fixation of Selectively Neutral Mutations, Science, 1969, vol. 164, pp. 788-798.

    Google Scholar 

  144. Otto, S.P., Detecting the Form of Selection from DNA Sequence Data, Trends Genet., 2000, vol. 16, no. 12, pp. 526-529.

    Google Scholar 

  145. Nielsen, R., Statistical Tests of Selective Neutrality in the Age Genomics, Heredity 2001, vol. 86, no. 6, pp. 641-647.

    Google Scholar 

  146. Sunyaev, S.R., Lathe, W.C. III, Ramensky, V.E., and Bork, P., SNP Frequencies in Human Genes: An Excess of Rare Alleles and Differing Modes of Selection, Trends Genet., 2000, vol. 16, no. 8, pp. 335-337.

    Google Scholar 

  147. Balanovskaya, E.V. and Rychkov, Yu.G., Ethnic Genetics: The Adaptive Gene-Pool Structure of the Global Population as Inferred from the Data on Human Polymorphic Genetic Markers, Genetika (Moscow), 1990, vol. 26, no. 4, pp. 739-748.

    Google Scholar 

  148. Rychkov, Yu.G. and Balanovskaya, E.V., Ethnic Genetics: The Relationship between Adaptive and Neutral Genetic Differentiation of Ethnic Groups, Genetika (Moscow), 1990, vol. 26, no. 3, pp. 541-549.

    Google Scholar 

  149. Rychkov, Yu.G. and Sheremetyeva, V.A., The Genetics of Circumpolar Populations of Eurasia Related to the Problem of Human Adaptation, The Human Biology of Circumpolar Populations Milan, F.A., Ed., Cambridge: Cambridge Univ. Press, 1979, vol. 21, pp. 37-80.

    Google Scholar 

  150. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Nauka, 1989, 2nd ed.

    Google Scholar 

  151. Altukhov, Yu.P., Salmenkova, E.A., and Omelchenko, V.T., Salmonid Fishes: Population Biology, Genetics, and Management, Oxford: Blackwell Sci., 2000.

    Google Scholar 

  152. Bowcock, A.M., Bucci, C., Hebert, J.M., et al., Study of 47 DNA Markers in Five Populations of Four Continents, Gene Geogr., 1987, no. 1, pp. 47-64.

  153. Cooper, D.N. and Schmidke, J., DNA Restrictions Fragment Length Polymorphism and Heterozygosity in Human Genome, Hum. Genet., 1984, vol. 66, pp. 1-16.

    Google Scholar 

  154. Rychkov, Yu.G. and Balanovskaya, E.V., Genetic Differentiation of Human Populations: Can DNA Polymorphism Be Predicted from Immunobiochemical Polymorphism?, Molekulyarnye mekhanizmy geneticheskikh protsessov (Molecular Mechanisms of Genetic Processes), Moscow: Nauka, 1990, pp. 67-83.

    Google Scholar 

  155. Sanchez, J.A., Clabby, C., Ramos, D., et al., Protein and Microsatellite Single-Locus Variability in Salmo salar L. (Atlantic Salmon), Heredity, 1996, vol. 77, pp. 423-432.

    Google Scholar 

  156. Dubreuil, P. and Charcosset, A., Gene Diversity within and among Maize Populations: A Comparison Between Isozyme and Nuclear RFLP Loci, Theor. Appl. Genet., 1998, vol. 96, pp. 577-587.

    Google Scholar 

  157. Aagaard, J.E., Krutovsky, K.V., and Strauss, S.H., RAPDs and Allozymes Exhibit Similar Levels of Diversity and Differentiation among Populations and Races of Douglas-Fir, Heredity, 1998, vol. 81, pp. 69-78.

    Google Scholar 

  158. Ross, K.G., Shoemaker, D.D., Krieger, M.J., et al., Assessing Genetic Structure with Multiple Classes of Molecular Markers: A Case Study Involving the Introduced Fire Ant Soenopsis invicta, Mol. Biol. Evol., 1999, vol. 16, pp. 525-543.

    Google Scholar 

  159. Raybould, A.F., Goudet, J., Mogg, R.J., et al., Genetic Structure of a Linear Population of Beta vulgaris ssp. maritime (Sugar Beet) Revealed by Isozyme and RFLP Analysis, Heredity, 1996, vol. 76, pp. 111-112.

    Google Scholar 

  160. Pogson, G.H., Mesa, K.A., and Boutilier, R.G., Genetic Population Structure and Gene Flow in Atlantic Cod, Gadus morhua: A Comparison of Allozyme and RFLP Loci, Genetics, 1995, vol. 139, pp. 375-385.

    Google Scholar 

  161. Latta, R.G. and Mitton, J.B., A Comparison of Population Differentiation across Four Classes of Gene Markers in Limber Pine (Pinus flexilis James), Genetics, 1997, vol. 146, pp. 1153-1163.

    Google Scholar 

  162. Karl, S.A. and Avise, J.C., Balancing Selection at Allozyme Loci in Oysters: Implications from Nuclear RFLPs, Science, 1992, vol. 256, pp. 100-102.

    Google Scholar 

  163. Scribner, K.T., Arntzen, J.W., and Burke, T., Comparative Analysis of Intra-and Interpopulation Genetic Diversity in Bufo bufo, Using Allozyme, Single-Locus Microsatellite, Minisatellite and Multilocus Minisatellite Data, Mol. Biol. Evol., 1994, vol. 11, pp. 737-748.

    Google Scholar 

  164. Altukhov, Yu.P., Balancing Selection as a Factor in Maintaining Allozyme Polymorphism, Usp. Sovrem. Biol., 1989, vol. 107, pp. 323-340.

    Google Scholar 

  165. Lewontin, R.C., The Genetic Basis of Evolutionary Change, New York: Columbia Univ. Press, 1974.

    Google Scholar 

  166. Politov, D.V., Krutovskii, K.V., and Altukhov, Yu.P., Characterization of the Gene Pools of Cedar Pine Populations with Respect to Several Isozyme Loci, Genetika (Moscow), 1992, vol. 28, no. 1, pp. 93-114.

    Google Scholar 

  167. Politov, D.V. and Krutovskii, K.V., Phylogenetics, Phylogeography and Hybridization of Five-Needle Pines in Russia and Neighboring Counties, Breeding and Genetic Resources of Five-Needle Pines: Adaptability and Pest Resistance: Proc. Conf. IUFRO Working Party 2.02.15 (July 23-27), 2001), Medford, Oreg.: USS Forest Serv., publ. no. RMRS-P-000 (in press).

  168. Glubokovsky, M.K. and Zhivotovsky, L.A., The Population Structure of Pink Salmon: A System of Fluctuating Stocks, Biol. Morya, 1986, no. 2, pp. 39-44.

  169. Zhivotovsky, L.A., Glubokovsky, M.K., Viktorovsky, R.M., et al., Genetic Differentiation of Pink Salmon, Genetika (Moscow), 1989, vol. 25, no. 7, pp. 1261-1274.

    Google Scholar 

  170. Glubokovsky, M.K., Zhivotovsky, L.A., Viktorovsky, R.M., et al., Organization of Pink Salmon Populations, Genetika (Moscow), 1989, vol. 25, no. 7, pp. 1275-1284.

    Google Scholar 

  171. Brykov, V.A., Polyakova, N.E., Skurikhina, L.A., et al., The Population Genetic Structure of Pink Salmon Oncorhynchus gorbuscha (Walbaum) as Revealed by Restriction Enzyme Analysis of Mitochondrial DNA: Temporal Heterogeneity at the Period of Spawning Run, Genetika (Moscow), 1999, vol. 35, no. 5, pp. 666-673.

    Google Scholar 

  172. Brykov, V.A., Polyakova, N., Skurihina, L.A., and Kukhlevsky, A.D., Geographical and Temporal Mitochondrial DNA Variability in Populations of Pink Salmon, J. Fish. Biol., 1996, vol. 48, pp. 899-909.

    Google Scholar 

  173. Altukhov, Yu.P., The Role of Balancing Selection and Overdominance in Maintaining Allozyme Polymorphism, Genetics (Netherl.), 1991, vol. 85, pp. 79-90.

    Google Scholar 

  174. Rogers, A., Order Emerging from Chaos in Human Evolutionary Genetics, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, no. 3, pp. 779-780.

    Google Scholar 

  175. Park, L.K. and Moran, P., Developments in Molecular Genetic Techniques in Fisheries, Rev. Fish Biol., 1994, vol. 4, pp. 272-299.

    Google Scholar 

  176. Morris, D.B., Richard, K.R., and Wright, J.M., Microsatellites from Rainbow Trout (Oncorhynchus mykiss) and Their Use for Genetic Study in Salmonids, Can. J. Fish. Aquat. Sci., 1996, vol. 53, pp. 120-126.

    Google Scholar 

  177. Ohdachi, S., Dokuchaev, N.E., Hasegava, M., and Masuda, R., Intraspecific Phylogeny and Geographical Variation of Six Species of Northeastern Asiatic Sorex Shrews Based on the Mitochondrial Cytochrome B Sequences, Mol. Ecol., 2001, vol. 10, pp. 2199-2213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altukhov, Y.P., Salmenkova, E.A. DNA Polymorphism in Population Genetics. Russian Journal of Genetics 38, 989–1008 (2002). https://doi.org/10.1023/A:1020288812170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020288812170

Keywords

Navigation