Skip to main content
Log in

Copper electrodeposition from a pH 3 sulfate electrolyte

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Kinetics and growth modes of copper electrodeposited from copper sulfate 0.8 M, pH 3 electrolytes are studied and compared to those for standard acidic sulfate baths. The influence of chlorides and three different additives (polyethylene glycol, a thiocompound and a quaternary ammonium salt) on steady state and transient electrokinetic behaviour, structure and morphology is investigated. Chlorides behave as a surface stabilizing agent, promoting epitaxy and contributing to the electrolyte microlevelling power. Each organic additive shows a specific effect which, however, may change substantially in the presence of other additives. Polyethylene glycol is a suppresser with the strongest action on copper electrodeposition, as shown by its effects on discharge kinetics and growth behaviour. The main role of the brightener (thiocompound) and the leveller (quaternary ammonium salt) consists in mitigating or tuning the surfactant blocking action respectively, realising the best balance between catalytic and suppressing factors. The pH 3 electrolyte is shown to be a valuable alternative to the standard acid bath, allowing higher deposition rates and promising improvements with regard to microthrowing power and growth control of thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Landau, J. D'Urso, A. Lipin, Y. Dordi, A. Malik, M. Chen and P. Hey, in P.C. Andricacos, P.C. Searson, C. Reidsema-Simpson, P. Allongue, J.L. Stickney and G.M. Oleszek (Eds), ‘Electrochemical Processing in ULSI Fabrication and Semiconductor/Metal Deposition II', PV 99–9, ECS Proceedings Series, Pennington, NJ (1999), pp. 25–40.

  2. U. Landau, Ext. Abs. 53, 191st Meeting Electrochemical Society, Montreal, Canada, 4–9 May (1997).

  3. K.M. Takahashi and M.E. Gross, J. Electrochem. Soc. 146 (1999) 4499.

    Google Scholar 

  4. S. Goldbach, B. van den Bossche, T. Daenen, J. Deconinck and F. Lapicque, J. Appl. Electrochem. 30 (2000) 1.

    Google Scholar 

  5. S.S. Kruglikov, Russ. J. Electrochem. 37 (2000) 776.

    Google Scholar 

  6. P.L. Cavallotti, R. Vallauri and A. Vicenzo, in AESF SUR/FIN 2000 Proceedings, AESF Inc., Orlando, FL (2000), pp. 325–333.

    Google Scholar 

  7. P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans and H. Deligianni, IBM J. Res. Develop. 42 (1998) 567.

    Google Scholar 

  8. W. Plieth, Electrochim. Acta 37 (1992) 2115.

    Google Scholar 

  9. G.B. Harris, Phil. Mag. 43 (1952) 113.

    Google Scholar 

  10. M.H. Mueller, W.P. Chernock and P.A. Beck, AIME Trans. 212 (1958) 39.

    Google Scholar 

  11. R. Cabán and T.W. Chapman, J. Electrochem. Soc. 124 (1977) 1371.

    Google Scholar 

  12. P.L. Cavallotti, D. Colombo, U. Ducati and A. Piotti, in L. Romankiw, D.A. Turner, (Eds), ‘Electrodeposition Technology, Theory and Practice’ PV 87–17, ECS Proceedings Series, Pennington, NJ (1987), pp. 429–447.

  13. U. Bertocci, Electrochim. Acta 11 (1966) 1261.

    Google Scholar 

  14. M. Hill and G.T. Rogers, J. Electroanal. Chem. 86 (1978) 179.

    Google Scholar 

  15. J.D. Reid and A.P. David, Plat. Surf. Finish. 74(1) (1987) 66.

    Google Scholar 

  16. J.J. Kelly, C. Tian and A.C. West, J. Electrochem. Soc. 146 (1999) 2540.

    Google Scholar 

  17. K.E. Heusler, Ber. Bunsenges. Phys. Chem. 71 (1967) 620.

    Google Scholar 

  18. B.E. Conway, ‘Theory and Principles of Electrode Processes’ (Ronald Press, New York, 1965), p. 236.

    Google Scholar 

  19. R. Haak, C. Ogden and D. Tench, Plat. Surf. Finish. 69(3) (1982) 62.

    Google Scholar 

  20. Q. Wu and D. Barkey, J. Electrochem. Soc. 147 (2000) 1038.

    Google Scholar 

  21. D.W. Suggs and A.J. Bard, J. Am. Chem. Soc. 116 (1994) 10725.

    Google Scholar 

  22. O.M. Magnussen and R.J. Behm, MRS Bulletin 24(7) (1999) 16.

    Google Scholar 

  23. Y. Fukunaka, H. Doi, Y. Nakamura and J. Kondo, in L. Romankiw and T. Osaka (Eds), ‘Electrochemical Technology in Electronics', PV 88-23, ECS Proceedings Series, Pennington, NJ (1988), pp. 83–93.

  24. T.I. Quickenden and X. Jiang, Electrochim. Acta 29 (1984) 693.

    Google Scholar 

  25. E. Mattson and J.O'M. Bockris, Trans. FaradaySoc. 55 (1959) 1586.

    Google Scholar 

  26. R. Wiart, E. Lejay and F. Lenoir, in Proceedings of Inter.nish, Basel, CH, Sept. 1972, Forster, Zürich, CH (1973), pp. 84–88.

    Google Scholar 

  27. T. Hurlen, G. Ottesen and A. Staurset, Electrochim. Acta 23 (1978) 39.

    Google Scholar 

  28. W. Dalla Barba and T. Hurlen, J. Electroanal. Chem. 91 (1978) 359.

    Google Scholar 

  29. K. Denpo, T. Okumara, Y. Fukunaka and Y. Kondo, J. Electrochem. Soc. 132 (1985) 1145.

    Google Scholar 

  30. E. Chassaing and R. Wiart, Electrochim. Acta 29 (1984) 649.

    Google Scholar 

  31. J.D. Reid and A.P. David, J. Electrochem. Soc. 134 (1987) 1389.

    Google Scholar 

  32. G. Carneval and J.B. De Cusminsky, J. Electrochem. Soc. 128 (1981) 1215.

    Google Scholar 

  33. L.S. Melnicki, in L. Romankiw and T. Osaka (Eds), ‘Electrochemical Technology in Electronics', PV 88–23, ECS Proceedings Series, Pennington, NJ (1988), pp. 95–103.

  34. M. Hill and G.T. Rogers, J. Electroanal. Chem. 68 (1976) 149.

    Google Scholar 

  35. Z. Nagy, J.B. Blaudeau, N.C. Hung, L.A. Curt iss and D.J. Zurawski, J. Electrochem. Soc. 142 (1995) L87.

    Google Scholar 

  36. E.D. Eliadis and R.C. Alkire, J. Electrochem. Soc. 145 (1998) 1218.

    Google Scholar 

  37. L. Mirkova, St. Rashkov and Chr. Nanev, Surf. Technol. 15 (1982) 181.

    Google Scholar 

  38. C.J. Pedersen, J. Am. Chem. Soc. 89 (1967) 7017.

    Google Scholar 

  39. S. Goldbach, W. Messing, T. Daenen and F. Lapicque, Electrochim. Acta 44 (1998) 323.

    Google Scholar 

  40. P.L. Cavallotti and A. Vicenzo, in D. Landolt, M. Matlosz and Y. Sato (Eds), ‘Fundamentals of Electrochemical Deposition and Dissolution’, PV 99–33, ECS Proceedings Series, Pennington, NJ (1999), pp. 123–134.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.L. Cavallotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicenzo, A., Cavallotti, P. Copper electrodeposition from a pH 3 sulfate electrolyte. Journal of Applied Electrochemistry 32, 743–753 (2002). https://doi.org/10.1023/A:1020191111298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020191111298

Navigation