Skip to main content
Log in

Tn5044-Conferred Mercury Resistance Depends on Temperature: the Complexity of the Character of Thermosensitivity

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Escherichia coli K12 containing the transposon Tn5044 mer operon (merR, T, P, C, and A genes) is resistant to mercuric chloride at 30°C but sensitive to this compound at 37–41.5°C. We have studied the mechanism underlying the temperature-sensitive nature of this mercury resistance phenotype, and found that the expression of the Tn5044 merA gene coding for mercuric reductase (MerA) is severely inhibited at non-permissive temperatures. Additionally, MerA showed a considerably reduced functional activity in vivo at non-permissive temperatures. However, the temperature-sensitive character of the functioning of this enzyme in cell extracts, where it interacted with one of the low-molecular weight SH compounds rather than with the transport protein MerT (as is the case in vivo), was not apparent. These data suggest that the temperature-sensitive mercury resistance phenotype should stay under control at two stages: when the merA gene is expressed and when its product interacts with MerT to accept the mercuric ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrineau, P., P. Gilbert, W.J. Jackson, C.S. Jones, A.O. Summers &; S. Wisdom, 1984. The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J. Mol. Appl. Genet. 2: 601–619.

    Google Scholar 

  • Bennett, P.M., J. Grinsted, C.L. Choi &; M.H. Richmond, 1978. Characterisation of Tn501, a transposon determining resistance to mercuric ions. Mol. Gen. Genet. 159: 101–106.

    Google Scholar 

  • Bogdanova, E.S., S.Z. Mindlin, E.S. Kalyaeva &; V.G. Nikiforov, 1988. The diversity of mercury reductases among mercuryresistant bacteria. FEBS Lett. 234: 280–282.

    Google Scholar 

  • Chang, A.C.Y. &; S.N. Cohen, 1978. Construction and characterization of amplifiable multicopy DNA vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134: 1141–1156.

    Google Scholar 

  • Gambill, B.D. &; A.O. Summers, 1992. Synthesis and degradation of the mRNA of the Tn21 mer operon. J. Mol. Biol. 225: 251–259.

    Google Scholar 

  • Grinsted, J., F. De La Cruz, J. Altenbuchner &; R. Schmitt, 1982. Complementation of transposition of tnpA mutants of Tn3, Tn21, Tn501, and Tn1721. Plasmid 8: 276–286.

    Google Scholar 

  • Grinsted, J., F. De La Cruz &; R. Schmitt, 1990. The Tn21 subgroup of bacterial transposable elements. Plasmid 24: 163–189.

    Google Scholar 

  • Hobman, J.L. &; N.L. Brown, 1997. Bacterial mercury resistance genes, pp. 527–567 in Metal Ions in Biological Systems, Vol. 34, edited by H. Sigel &; A. Sigel. Marcel Dekker, NY.

    Google Scholar 

  • Izaki, K., Y. Tashiro &; T. Funaba, 1974. Mechanism of mercuric chloride resistance in microorganisms. 3. Purification and properties of a mercuric ion reducing enzyme from Escherichia coli bearing R factor. J. Biochem (Tokyo) 75: 591–599.

    Google Scholar 

  • Kalyaeva, E.S., G.Ya. Kholodii, I.A. Bass, Zh.M. Gorlenko, O.V. Yurieva &; V.G. Nikiforov, 2001. Tn5037, a Tn21-like mercury resistance transposon from Thiobacillus ferrooxidans. Russ. J. Genet. 37: 1160–1164.

    Google Scholar 

  • Kholodii, G.Ya., S.Z. Mindlin, I.A. Bass, O.V. Yurieva, S.V. Minakhina &; V.G. Nikiforov, 1995. Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol. Microbiol. 17: 1189–1200.

    Google Scholar 

  • Kholodii, G.Ya., O.V. Yurieva, Zh.M. Gorlenko, S.Z. Mindlin, I.A. Bass, O.L. Lomovskaya, A.V. Kopteva &; V.G. Nikiforov, 1997. Tn5041: a himeric mercury resistance transposon closely related to a toluene degradative transposon Tn4651. Microbiology 143: 2549–2556.

    Google Scholar 

  • Kholodii, G.Ya., S.Z. Mindlin, Zh.M. Gorlenko, I.A. Bass, E.S. Kalyaeva &; V.G. Nikiforov, 2000a. Host-dependent transposition of Tn5041. Russ. J. Genet. 36: 365–373.

    Google Scholar 

  • Kholodii, G., O. Yurieva, S. Mindlin, Zh. Gorlenko, V. Rybochkin &; V. Nikiforov, 2000b. Tn5044, a novel Tn3 family transposon coding for temperature-sensitive mercury resistance. Res. Microbiol. 151: 291–312.

    Google Scholar 

  • Liebert, C.A., J. Wireman, T. Smith &; A.O. Summers, 1997. Phylogeny of mercury resistance (mer) operons of Gramnegative bacteria isolated from the fecal flora of primates. Appl. Environ. Microbiol. 63: 1066–1076.

    Google Scholar 

  • Liebert, C.A., R.M. Hall &; A.O. Summers, 1999. Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63: 507–522.

    Google Scholar 

  • Liebert, C.A., A.L. Watson &; A.O. Summers, 2000. The quality of merC, a module of the mer mosaic. J. Mol. Evol. 51: 607–622.

    Google Scholar 

  • Mindlin, S.Z., Zh.M. Gorlenko, O.L. Lomovskaya, E.S. Bogdanova, E.S. Kalyaeva, A.I. Gragerov, V.G. Nikiforov &; R.B. Khesin, 1986. Acinetobacter plasmids responsible for the resistance to HgCl2: occurrence in different mercury deposits. Genetika (Moscow) 22: 2684–2692.

    Google Scholar 

  • Mindlin, S., G. Kholodii, Zh. Gorlenko, S. Minakhina, L. Minakhin, E. Kalyaeva, A. Kopteva, M. Petrova, O. Yurieva &; V. Nikiforov, 2001. Mercury resistance transposons of gram-negative environmental bacteria and their classification. Res. Microbiol. 152: 811–822.

    Google Scholar 

  • Moore, M.J., S.M. Miller &; C.T. Walsh, 1992. C-terminal cysteines of Tn501 mercuric ion reductase. Biochemistry 31: 1677–1685.

    Google Scholar 

  • Morby, A.P., J.L. Hobman &; N.L. Brown, 1995. The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Mol. Microbiol. 17: 25–35.

    Google Scholar 

  • Muir, R.S., H. Flores, N.D. Zinder, P. Model, X. Soberon &; J. Heitman, 1997. Temperature-sensitive mutants of the EcoRI endonuclease. J. Mol. Biol. 274: 722–737.

    Google Scholar 

  • Nakahara, H., S. Silver, T. Miki &; R.H. Rownd, 1979. Hypersensitivity to Hg2+ and hyperbinding activity associated with cloned fragments of the mercurial resistance operon of plasmid NR1. J. Bacteriol. 140: 161–166.

    Google Scholar 

  • Peltz, S.W., A.L. Brown, N. Hasan, A.J. Podhajska &; W. Szybalski, 1985. Thermosensitivity of a DNA recognition site: activity of a truncated nutL antiterminator of coliphage lambda. Science 228: 91–93.

    Google Scholar 

  • Reniero, D., E. Mozzon, E. Galli &; P. Barbieri, 1998. Two aberrant mercury resistance transposons in the Pseudomonas stutzeri plasmid pPB. Gene 208: 37–42.

    Google Scholar 

  • Sambrook, J., E.F. Fritsch &; T. Maniatis (eds.), 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schottel, J.L., 1978. The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J. Biol. Chem. 253: 4341–4349.

    Google Scholar 

  • Trevors, J., K. Oddie &; B. Bellivean, 1985. Metal resistance in bacteria. FEMS Microbiol. Lett. 32: 39–54.

    Google Scholar 

  • Velasco, A., P. Acebo, N. Flores &; J. Perera, 1999. The mer operon of the acidophilic bacterium Thiobacillus T3.2 diverges from its Thiobacillus ferrooxidans counterpart. Extremophiles 3: 35–43.

    Google Scholar 

  • Vieira, J. &; J. Messing, 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

    Google Scholar 

  • Wang, Y., M. Moore, H.S. Levinson, S. Silver, C. Walsh &; I. Mahler, 1989. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. J. Bacteriol. 171: 83–92.

    Google Scholar 

  • Yanish-Perron, C., J. Vieira &; J. Messing, 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholodii, G., Bogdanova, E. Tn5044-Conferred Mercury Resistance Depends on Temperature: the Complexity of the Character of Thermosensitivity. Genetica 115, 233–241 (2002). https://doi.org/10.1023/A:1020185206563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020185206563

Navigation