Skip to main content
Log in

Enzymatic Degradation of Dynasan 114 SLN – Effect of Surfactants and Particle Size

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The degradation velocity of solid lipid nanoparticles (SLN) is – apart from drug diffusion – an important parameter determining drug release in vivo. To assess the effect of stabilizers systematically, Dynasan 114 SLN were produced with ionic surfactants (e.g. cholic acid sodium salt (NaCh), sodium dodecyl sulfate (SDS), cetylpyridiniumchloride (CPC)) and steric stabilizers (Tween 80, Poloxamer 188, 407 and Poloxamine 908) including a mixture of cholic acid sodium salt and Poloxamer 407. In addition, the size effects were investigated. The degradation velocity was measured using an in vitro lipase assay. SLN stabilized with lecithin and NaCh showed the fastest, Tween 80 the intermediate and the high molecular weight Poloxamer 407 the slowest degradation. Size effects were less pronounced for fast degrading particles (e.g. those stabilized with NaCh). No difference in the size range of 180–300-nm was observed, but a distinctly slower degradation of 800-nm SLN could be detected. For slowly degrading particles, more pronounced size effects were found. Size effects are more difficult to assess when the PCS diameters are similar, but small fractions of micrometer particles are present, besides the nanometer bulk population. The measured FFA formation is then a superposition of particles degrading at different speeds due to differences in the shape of the size distribution. Admixing of Poloxamer to NaCh had no delaying effect on the degradation of the Dynasan 114 SLN, indicating an influence of the nature of the lipid matrix that is affecting the stabilizers affinity to and anchoring onto the SLN surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bunjes H., K. Westesen &; M.H.J. Koch, 1996. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129, 159-173.

    Google Scholar 

  • Blunk T., D.F. Hochstrasser, J.-C. Sanchez, B.W. Müller &; R.H. Müller, 1993. Colloidal Carriers for Intravenous Drug Targeting: Plasma Protein Adsorption Patterns on Surface-Modified Latex Particles Evaluated by Two-dimensional Polyacrylamide Gel Electrophoresis, Electrophoresis. 14, 1382-1387.

    Google Scholar 

  • Brokman H.L., 2000. Kinetic behavior of the pancreatic lipasecolipase-lipid system, Biochimie 82, 987-995.

    Google Scholar 

  • Grizzi I., H. Garreau, S. Li &; M. Vert, 1995. Hydrolytic degradation of devices based on poly(DL-lactic acid)-size dependence. Biomaterials 16, 305-311.

    Google Scholar 

  • Holmberg K., M. Nyden, L.-T. Lee, M. Malmsten &; J.K. Brajesh Jha, 2000. Interactions between a lipase and charged surfactants-a comparison between bulk and interfaces. Adv. Colloids Int. Sci. 88, 223-241.

    Google Scholar 

  • Jenning V., M. Schäfer-Korting &; S. Gohla, 2000. Vitamin Aloaded solid lipid nanoparticles for topical use: drug release properties. J. Controlled Release 15, 115-126.

    Google Scholar 

  • Kazzaz J., J. Neidleman, M. Singh, G. Ott &; D.T. O'Hagan, 2000. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1, J. Controlled Release 67, 347-156.

    Google Scholar 

  • Moghimi S.M., 1999. Re-establishing the long circulatory behaviour of poloxamine-coated particles after repeated intravenous administration: applications in cancer drug delivery and imaging. Biochim. Biophys. Acta 18, 399-403.

    Google Scholar 

  • Müller R.H., C. Lherm, P. Jaffray &; P. Couvreur, 1988. Toxicity of cyanoacrylate particles in l929 fibroblast cell cultures-relation between toxicity and in vitro characterization parameters. Arch. Pharm. 321, 681ff.

  • Müller R.H., 1991. Colloidal carriers for controlled drug delivery and targeting-modification, characterization and in vivo distribution. Wissenschaftliche Verlagsgesellschaft Stuttgart. CRC Press, Boca Raton, 379S.

    Google Scholar 

  • Müller R.H., W. Mehnert, J.S. Lucks, C. Schwarz, A. zur Mühlen, H. Weyhers, C. Freitas &; D. Rühl, 1995. Solid lipid nanoparticles (SLN)-an alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm. 41, 62-69.

    Google Scholar 

  • Müller R.H., J.S. Lucks, 1996. Arzneistoffträger aus festen Lipidteilchen. Feste Lipidnanosphären (SLN). European Patent No. 0605497.

  • Müller R.H., N. Grubhofer &; C. Olbrich, 1999. Stabilitäts-. Biokompatibilitäts-optimiertes Adjuvans (SBA) zur Erhöhung der humoralen und zellulären Immunantwort. German Patent Application No. 199 23 256.3.

  • Müller R.H. &; C. Olbrich, 1999. Solid lipid nanoparticles (SLN): Phagocytic uptake, in vitro cytotoxity and in vivo biodegradation. 1st Communication. Pharm. Ind. 61, 462-467.

    Google Scholar 

  • Müller R.H., K. Mäder &; S. Gohla, 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm. 50, 161-177.

    Google Scholar 

  • Olbrich C., W. Mehnert &; R.H. Müller, 1997. Effect of surfactant and lipid composition on the in vitro degradation time of solid lipid nanoparticles (SLN). Intern. Symp. Control. Rel. Bioact. Mater. 24, 921-922.

    Google Scholar 

  • Olbrich C., W. Mehnert, R.H. Müller, 1998. In vitro degradation properties of Solid Lipid Nanoparticles SLN. 2ndWorld Meeting APGI/APV, Paris, pp. 577-578.

  • Olbrich C., W. Mehnert &; R.H. Müller, 1998. Development of an in vitro degradation assay for solid lipid nanoparticles. 2nd World Meeting APGI/APV, Paris, pp. 627-628

  • Olbrich C., R.H. Müller, 1999. Enzymatic degradation of SLN-Effect of surfactant and surfactant mixtures. Int. J. Pharm. 180, 31-39.

    Google Scholar 

  • Olbrich C., O. Kayser, R.H. Müller, N. Grubhofer, 2000. Solid lipid nanoparticles (SLN) as vaccine adjuvant-study in sheep with a mycoplasma bovis antigen and stability testing. Intern. Symp. Control. Rel. Bioact. Mater. 27, 8110.

    Google Scholar 

  • Olbrich C., N. Schöler, K. Tabatt, R.H. Müller &; O. Kayser. Cytotoxicity of anionic and cationic solid lipid nanoparticles (SLN) on RAW 264.7 cells. ATLA (in preparation).

  • Olbrich C., R.H. Müller &; O. Kayser. Enzymatic degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)-effect of storage time and rate of crystallinity. Int. J. Pharm. (accepted).

  • Penkler L., R.H. Müller, S.A. Runge &; V. Ravelli, 1999. Pharmazeutische Ciclosporin-Formulierung mit verbesserten biopharmazeutischen Eigenschaften. Erhöhter physikalischer Qualität und Stabilität sowie Verfahren zur Herstellung (Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties. Improved physical quality and greater stability and method for producing said formulation). PCT-application PCT/EP99/02892. Priority Date: 30 April 1998. International submission date: 29 April 1999.

  • Schöler N., C. Olbrich, K. Tabatt, N. Conrad, R.H. Müller, H. Hahn &; O. Liesenfeld, 2001. Cytotoxicity of SLN on peritoneal mouse macrophages. Int. J. Pharm. 221, 57-61.

    Google Scholar 

  • Singh M., M. Briones, G. Ott &; D. O'Hagan, 2000. Cationic microparticles: A potent delivery system for DNA vaccines. 1. Proc. Natl. Acad. Sci. USA 97, 811-816.

    Google Scholar 

  • Wannerberger K., M. Wahlgren &; T. Arnebrant, 1996. Adsorption from lipase-surfactant solutions onto methylated silica surfaces. Colloids Surf. B 6, 27-36.

    Google Scholar 

  • Winkler F.K., A. D'Arcy &; W. Hunziker, 1990. Structure of human pancreatic lipase. Nature 343, 771-774.

    Google Scholar 

  • zur Muhlen A., C. Schwarz &; W. Mehnert, 1998. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm. 45, 149-155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Helmut Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olbrich, C., Kayser, O. & Müller, R.H. Enzymatic Degradation of Dynasan 114 SLN – Effect of Surfactants and Particle Size. Journal of Nanoparticle Research 4, 121–129 (2002). https://doi.org/10.1023/A:1020159331420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020159331420

Navigation