Skip to main content
Log in

Spray Freeze-drying – The Process of Choice for Low Water Soluble Drugs?

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benet L.Z., C.-Y.Wu, M.F. Herbert &; V.J.Wacher, 1996. Intestinal drug metabolism and antitransport processes. A potential paradigm shift in oral drug delivery. J. Contr. Release 39, 139-1143.

    Google Scholar 

  • Bongartz C., 2002. PhD Thesis, University of Basel (to be published).

  • Chiou W.L. &; S. Riegelmann, 1971. Absorption characteristics of solid dispersed and micronized Griseofulvin in man. J. Pharm. Sci. 60, 1376-1380.

    Google Scholar 

  • Chiou W.L. &; S. Niazi, 1976. Pharmaceutical applications of solid dispersion systems: Dissolution of Griseofulvin-Succinic acid eutectic mixture. J. Pharm. Sci. 65, 1212-1214.

    Google Scholar 

  • Chiou W.L. &; S. Riegelmann, 1969. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J. Pharm. Sci. 58, 1505-1510.

    Google Scholar 

  • Friömming K.-H., K. Heyer &; R. Hosemann, 1981. Schmelzeinbettung des Griseofulvins in Pluronic F68, Deutsche Apoth. Zeitung 121, 2276-2280.

    Google Scholar 

  • Geldart D., N. Harby &; A.C. Wong, 1983. Fluidization of cohesive powders in 'The role of particle interactions' in powder mechanics, preprint of Int. Symp. Eindhoven, August 29-31, p. 24.

  • Komiyama H., K. Sunouchi, Y. Egashira &; Y. Shimogaki, 1990. Mechanism of particle formation in chemically reactive systems. In: Proceedings of Second World Congress Particle Technology, Society of Powder Technology, September 19-22, Kyoto, Japan, Vol. II, pp. 245-256.

  • Leuenberger H., B. Luy &; P. Hirschfeld, 1990. Experiences with a novel fluidized bed system operating under vacuum conditions. In: Proceedings of Preworld Congress Particle Technology, September 17-18, pp. 113-122, Gifu, Japan.

  • Lindenbaum J., J.R. Butler, J.E. Murphy &; R.M. Cresswell, 1973. Correlation of digoxin-tablet dissolution rate with biological availability. Lancet 1, 1215-1217.

    Google Scholar 

  • Luy B., P. Hirschfeld &; H. Leuenberger, 1989a. Granulation and Drying inVacuum Fluid Bed Systems, Drugs made in Germany, 32, 3-8.

    Google Scholar 

  • Luy B., P. Hirschfeld &; H. Leuenberger, 1989b. Granulieren und Trocknen in der Vakuum-Wirbelschicht. Pharm. Ind. 51, 89-94.

    Google Scholar 

  • Maung M.C., K. Patel &; R.T. Borchardt, 1989. Stability of protein pharmaceuticals. Pharm. Res. 11, 903-918.

    Google Scholar 

  • Mennet H.P., 1994. Sprüh-Gefriertrocknung bei Atmosph ¨arendruck: Ein Beitrag zur Untersuchung des Prozesses und seiner Anwendungsmöglichkeiten, PhD Thesis, University of Basel.

  • Mumenthaler M. &; H. Leuenberger, 1991. Atmospheric sprayfreeze drying: A suitable alternative in freeze drying technology. Int. J. Pharm. 72, 97-110.

    Google Scholar 

  • Pikal M.J., M.L. Roy &; S. Shah, 1984. Mass and heat transfer in vial freeze-drying of pharmaceuticals: Role of the vial. J. Pharm. Sci. 73, 1224-1237.

    Google Scholar 

  • Pikal M.J., K.M. Dellerman, M.L. Roy &; R.M. Riggin, 1991. The effect of formulation variables on the stability of freeze-dried human growth hormone. Pharm. Res. 8, 427-436.

    Google Scholar 

  • Robertson J., M.B. King, J.P.K. Seville, D.R. Merrifield &; P.C. Buxton, 1998. Recrystallization of Organic Compounds Using Near critical Carbon Dioxide, Preprints of the 1st European Symposium Process Technology in Pharmaceutical and Nutritional Sciences, PARTEC 98, 10-12 March, Nürnberg, Germany (H. Leuenberger, ed.), pp. 131-140. ISBN 3-921590-55-8.

  • Shaw T.R.D. &; J.E. Careless, 1974. Effect of particle size on the absorption of digoxine. Eur. J. Clin. Pharmacol. 7, 269-273.

    Google Scholar 

  • Soldner A., U. Christians, M. Susanto, V.J. Wacher, J.A. Silverman &; L.Z. Benet, 1999. Grapefruit Juice activates P-Glycoprotein-mediated drug transport. Pharm. Res. 16, 478-485.

    Google Scholar 

  • Stella B, S. Arpicco, M.T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D'Angelo, I. Cattel &; P. Couvreur, 2000. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89, 1452-1464.

    Google Scholar 

  • Tanaka T, 1995. Optimum design for fine and ultrafine grinding mechanisms using grinding media. KONA 13, 19-29.

    Google Scholar 

  • Weber A, J. Tschernjaew, M. Beutin &; R. Kümmel, 1998. Fine particle production by precipitation with compressed or supercritical fluids, Preprints of the 1st European Symposium Process Technology in Pharmaceutical and Nutritional Sciences, PARTEC 98, 10-12 March, Nürnberg, Germany (H. Leuenberger, ed.), pp. 121-130. ISBN 3-921590-55-8.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuenberger, H. Spray Freeze-drying – The Process of Choice for Low Water Soluble Drugs?. Journal of Nanoparticle Research 4, 111–119 (2002). https://doi.org/10.1023/A:1020135603052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020135603052

Navigation