Skip to main content
Log in

Synthesis of Pegylated Immunonanoparticles

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This work describes the synthesis of pegylated immunonanoparticles by conjugation of an anti-transferrin receptor monoclonal antibody (MAb) to maleimide-grafted pegylated nanoparticles prepared from poly(lactic acid) (PLA) and a bi-functional polyethyleneglycol (PEG).

Methods. Maleimide-PEG3500-PLA40000 and methoxyPEG2600-PLA40000 copolymers were synthesized by ring opening polymerization of L-lactide using stannous octoate as catalyst. Pegylated nanoparticles were prepared from these copolymers by a multiple emulsion/solvent evaporation method and thiolated OX26 MAb was conjugated through the maleimide function located at the distal end of the PEG spacer. The pegylated immunonanoparticles were characterized by quasi-elastic light scattering, gel permeation chromatography, turbidimetry assays, and transmission electron microscopy.

Results. NMR spectroscopy confirmed the synthesis of both copolymers and the preservation of the maleimide function. The pegylated immunonanoparticles had an average diameter of 121 ± 5 nm and appeared spherical by transmission electron microscopy. The number of OX26 MAb molecules conjugated per individual pegylated nanoparticle was 67 ± 4. The MAb conjugated to the surface of the pegylated immunonanoparticle was visualized directly by electron microscopy using a conjugate of 10 nm gold and an anti-mouse immunoglobulin secondary antibody.

Conclusion. Pegylated immunonanoparticles can be synthesized with bifunctional PEG derivatives that bridge the nanoparticle and the targeting MAb. This novel formulation may enable the targeted delivery of small molecules, protein drugs, and gene medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A 88:11460–11464 (1991).

    Google Scholar 

  2. J. Huwyler, W. Dafang, and W. M. Pardridge. Brain drug delivery of small molecules using immunoliposomes. Proc. Natl. Acad. Sci. USA 93:14164–14169 (1996).

    Google Scholar 

  3. J. M. Anderson and M. S. Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5–24 (1997).

    Google Scholar 

  4. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating nanospheres. Science 263:1600–1603 (1994).

    Google Scholar 

  5. R. Gref, A. Domb, P. Quellec, T. Blunk, R. H. Müller, J. M. Verbavatz, and R. Langer. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16:215–233 (1995).

    Google Scholar 

  6. T. Verrecchia, G. Spenlehauer, D. V. Bazile, A. Murry-Brelier, Y. Archimbaud, and M. Veillard. Non stealth (poly(lactic acid/ albumin)) and Stealth PLA-PEG nanoparticles as injectable drug carriers. J. Control. Release 36:49–61 (1995).

    Google Scholar 

  7. M. T. Perracchia, R. Gref, Y. Minamitake, A. Domb, N. Lotan, and R. Langer. PEG-coated nanospheres from amphiphilic diblock and multiblock copomers: investigation of their drug encapsulation and release characteristics. J. Control. Release 46:223–231 (1997).

    Google Scholar 

  8. M. F. Zambaux, F. Bonneaux, R. Gref, E. Dellacherie, and C. Vigneron. Protein C-loaded monomethoxypoly (ethylene oxide)-poly(lactic acid) nanoparticles. Int. J. Pharm. 212:1–9 (2001).

    Google Scholar 

  9. C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer, and M. J. Alonso. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Release 75:211–224 (2001).

    Google Scholar 

  10. J. P. Plard and D. Bazile. Comparison of the safety profiles of PLA50 and Me.PEG-PLA50 nanoparticles after single dose intravenous administration to rat. Colloids Surf. B Biointerf. 16:173–183 (1999).

    Google Scholar 

  11. K. Yasugi, T. Nakamura, Y. Nagasaki, and K. Kataoka. Sugar-installed polymer micelles: synthesis and micellization of poly-(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end. Macromolecules 32:8024–8032 (1999).

    Google Scholar 

  12. D. Bazile, C. Prud'homme, M. T. Bassoullet, M. Marlard, G. Spenlehauer, and M. Veillard. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 84:493–498 (1995).

    Google Scholar 

  13. T. Riley, T. Govender, S. Stolnik, C. D. Xiong, M. C. Garnett, L. Illum, and S. S. Davis. Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids Surf. B Biointerf. 16:147–159 (1999).

    Google Scholar 

  14. P. Quellec, R. Gref, L. Perrin, E. Dellacherie, F. Sommer, J. M. Verbavatz, and M. J. Alonso. Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization. J. Biomed. Mater. Res. 42:45–54 (1998).

    Google Scholar 

  15. Y.-S. Kang and W. M. Pardridge. Use of neutral avidin improves pharmacokinetics and brain delivery of biotin bound to an avidin-monoclonal antibody conjugate. J. Pharmacol. Exp. Ther. 269: 344–350 (1994).

    Google Scholar 

  16. W. M. Pardridge, J. L. Buciak, and T. Yoshikawa. Transport of recombinant CD4 through the rat blood-brain barrier in vivo. J. Pharmacol. Exp. Ther. 261:1175–1180 (1992).

    Google Scholar 

  17. S. Tanodekaew, R. Pannu, F. Heatley, D. Attwood, and C. Booth. Association and surface properties of diblock copolymers of ethylene oxide and DL-lactide in aqueous solution. Macromol. Chem. Phys. 198:927–944 (1997).

    Google Scholar 

  18. The Sadtler Handbook of Proton NMR Spectra. W.W. Simons (ed.). Sadtler Research Laboratories, Philadelphia (1978).

    Google Scholar 

  19. Sadtler Standard Carbon-13 NMR Spectra. Sadtler Research Laboratories, Philadelphia (1978).

  20. P. Bouillot, A. Petit, and E. Dellacherie. Protein encapsulation in biodegradable amphiphilic microspheres I. Polymer synthesis and characterization, and microsphere elaboration. J. Appl. Pol. Sci. 68:1695–1702 (1998).

    Google Scholar 

  21. H. Sahli, J. Tapon-Bretaudière, A. M. Fischer, C. Sternberg, G. Spenlehauer, T. Verrecchia, and D. Labarre. Interactions of poly-(lactic acid) and poly(lactic acid-co-ethylene oxide) nanoparticles with the plasma factors of the coagulation system. Biomaterials 18:281–288 (1997).

    Google Scholar 

  22. J. Huwyler, J. Yang, and W. M. Pardridge. Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J. Pharmacol. Exp. Ther. 282:1541–1546 (1997).

    Google Scholar 

  23. N. Shi and W. M. Pardridge. Non invasive gene targeting to the brain. Proc. Natl. Acad. Sci. USA 97:7567–7572 (2000).

    Google Scholar 

  24. W. M. Pardridge, R. J. Boado, and Y. S. Kang. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo. Proc. Natl. Acad. Sci. USA 92:5592–5596 (1995).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivier, JC., Huertas, R., Lee, H.J. et al. Synthesis of Pegylated Immunonanoparticles. Pharm Res 19, 1137–1143 (2002). https://doi.org/10.1023/A:1019842024814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019842024814

Navigation