Skip to main content
Log in

Mechanism of Corneal Permeation of L-Valyl Ester of Acyclovir: Targeting the Oligopeptide Transporter on the Rabbit Cornea

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To delineate mechanisms associated with the corneal transport of a L-valine prodrug of an antiviral agent, acyclovir.

Method. The permeability and enzymatic hydrolysis of L-Val-ACV were evaluated using freshly excised rabbit cornea. Transport mechanism across rabbit cornea was investigated through a competitive inhibition study of L-Val-ACV with other substrates of human peptide transporter (hPepT1).

Results. L-Valyl ester of Acyclovir (L-Val-ACV) was approximately threefold more permeable across the intact rabbit cornea than acyclovir (ACV). Dipeptides, β-lactam antibiotics, and angiotensin converting enzyme (ACE) inhibitors, strongly inhibited the transport of L-Val-ACV indicating that a carrier mediated transport system specific for peptides is primarily responsible for the corneal permeation of L-Val-ACV. L-Val-ACV transport was found to be saturable (K m = 2.26 ± 0.34 mM, J max = 1.087 ± 0.05 nmoles cm 2 min 1), energy and pH dependent.

Conclusions. Functional evidence of an oligopeptide transport system present on the rabbit cornea has been established. The peptide transporter on the corneal epithelium may be targeted to improve the ocular bioavailability of poorly absorbed drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. L. Easty. Clinical Aspects of Ocular Herpes Simplex Virus Infection: Chicago Year Book Medical Publishers, 1985.

  2. D. M. Richards, A. A. Carmine, R. N. Brogden, R. C. Heel, T. M. Speight and G. S. Avery. Acyclovir. A review of its pharmacodynamic properties and therapeutic efficacy. Drugs. 26:378–438 (1983).

    Google Scholar 

  3. J. J. Sanitato, P. A. Asbell, E. D. Varnell, G. E. Kissling, and H. E. Kaufman. Acyclovir in the treatment of herpetic stromal disease. Am. J. Ophthalmol. 98:537–547 (1984).

    Google Scholar 

  4. P. M. Hughes and A. K. Mitra. Effect of acylation on the ocular disposition of acyclovir. II: Corneal permeability and anti-HSV 1 activity of 2´-esters in rabbit epithelial keratitis. J. Ocul. Pharmacol. 9:299–309 (1993).

    Google Scholar 

  5. S. Weller, M. R. Blum, M. Doucette, T. Burnette, D. M. Cederberg, P. de Miranda, and M. L. Smiley. Pharmacokinetics of the acyclovir pro-drug valaciclovir after escalating single-and multiple-dose administration to normal volunteers. Clin. Pharmacol. Ther. 54:595–605 (1993).

    Google Scholar 

  6. R. H. Lupia, N. Ferencz, J. J. Lertora, S. K. Aggarwal, W. J. George, and K. C. Agrawal. Comparative pharmacokinetics of two prodrugs of zidovudine in rabbits: enhanced levels of zidovudine in brain tissue. Antimicrob. Agents Chemother. 37:818–824 (1993).

    Google Scholar 

  7. L. M. Beauchamp, G. F. Orr, P. D. Miranda, and T. A. Krenitsky. Amino acid ester prodrugs of Acyclovir. Antiviral. Chem. Chemotherap. 3:157–164 (1992).

    Google Scholar 

  8. H. K. Han, D. M. Oh, and G. L. Amidon. Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPEPT1 cells overexpressing a human peptide transporter. Pharm. Res. 15:1382–1386 (1998).

    Google Scholar 

  9. P. V. Balimane, I. Tamai, A. Guo, T. Nakanishi, H. Kiteda, F. H. Leibach, A. Tsuji, and P. J. Sinko. Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. 250:246–251 (1998).

    Google Scholar 

  10. R. L. de Vrueh, P. L. Smith, and C. P. Lee. Transport of L-valine-acyclovir via the oligopeptide transporter in the human intestinal cell line Caco-2. J. Pharmacol. Exp. Ther. 286:1166–1170 (1998).

    Google Scholar 

  11. X. Zhou, M. Thamotharan, A. Gangopadhyay, C. Serdikoff, and A. A. Adibi. Characterization of an oligopeptide transporter in renal lysosomes. Biochim. Biophys. Acta. 1466:372–378 (2000).

    Google Scholar 

  12. H. Saito, M. Okuda, T. Terada, S. Sasaki, and K. Inui. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. J. Pharmacol. Exp. Ther. 275:1631–1637 (1995).

    Google Scholar 

  13. V. H. Lee. Membrane transporters. Eur. J. Pharm. Sci. 11Suppl 2:S41–50 (2000).

    Google Scholar 

  14. A. Tsuji and I. Tamai. Carrier-mediated intestinal transport of drugs. Pharm. Res. 13:963–977 (1996).

    Google Scholar 

  15. D. M. Oh, H. K. Han, and G. L. Amidon. Drug transport and targeting. Intestinal transport. Pharm. Biotechnol. 12:59–88 (1999).

    Google Scholar 

  16. I. Tamai and A. Tsuji. Transporter-mediated permeation of drugs across the blood-brain barrier. J. Pharm. Sci. 89:1371–1388 (2000).

    Google Scholar 

  17. B. S. Anand and A. K. Mitra. Ocular Disposition of Acyclovir Analogs: Aqueous Stability, Ocular Tissue Hydrolysis and Transport Characteristics. AAPSPharmSci (supplement) 3 (2001).

  18. S. K. Wu, D. K. Ann, and V. H. Lee. Molecular Evidence for the Existence of Dipeptide Transporters in Rabbit Cornea and Conjunctiva. AAPSPharmSci (supplement). 3 (2001).

  19. A. Guo, P. Hu, P. V. Balimane, F. H. Leibach, and P. J. Sinko. Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. J. Pharmacol. Exp. Ther. 289:448–454 (1999).

    Google Scholar 

  20. C. S. Dias, B. S. Anand, and A. K. Mitra. Effect of Mono and Di Acylation on the ocular disposition of Ganciclovir: Physicochemical Properties, Ocular Bioreversion and Antiviral Activity of short chain Ester Prodrugs. J. Pharm. Sci. 91:660–668 (2002).

    Google Scholar 

  21. R. V. Tak, D. Pal, H. Gao, S. Dey, and A. K. Mitra. Transport of acyclovir ester prodrugs through rabbit cornea and SIRC-rabbit corneal epithelial cell line. J. Pharm. Sci. 90:1505–1515 (2001).

    Google Scholar 

  22. C. Pham-Huy, F. Stathoulopoulou, P. Sandouk, J. M. Scherrmann, S. Palombo, and C. Girre. Rapid determination of valaciclovir and acyclovir in human biological fluids by high-performance liquid chromatography using isocratic elution. J. Chromatogr. B Biomed. Sci. Appl. 732:47–53 (1999).

    Google Scholar 

  23. I. Tamai, T. Nakanishi, K. Hayashi, T. Tesao, Y. Sai, T. Shirago, K. Miyamoto, E. Takaeda, H. Higashida, and A. Tsuji. The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of beta-lactam antibiotics in the rat small intestine. J. Pharm. Pharmacol. 49:796–801 (1997).

    Google Scholar 

  24. T. Terada, H. Saito, M. Mukai, and K. Inui. Recognition of betalactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am. J. Physiol. 273:F706–F711 (1997).

    Google Scholar 

  25. M. Sugawara, W. Huang, Y. J. Fei, F. H. Leibach, V. Ganapathy, and M. E. Ganapathy. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci. 89:781–789 (2000).

    Google Scholar 

  26. M. E. Ganapathy, M. Brandsch, P. D. Prasad, V. Ganapathy, and F. H. Leibach. Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, PEPT1 and PEPT2. J. Biol. Chem. 270:25672–25677 (1995).

    Google Scholar 

  27. THE MERCK INDEX Twelfth Edition. In: S. Budavari, (ed.), Merck Research Laboratories, Division of MERCK & CO., Inc., 1996.

  28. P. M. Hughes, R. Krishnamoorthy, and A. K. Mitra. Effect of acylation on the ocular disposition of acyclovir. I: Synthesis, physicochemical properties, and antiviral activity of 2'-esters. J. Ocul. Pharmacol. 9:287–297 (1993).

    Google Scholar 

  29. K. C. Meadows and J. B. Dressman. Mechanism of acyclovir uptake in rat jejunum. Pharm. Res. 7:299–303 (1990).

    Google Scholar 

  30. G. I. Henderson, Z. Q. Hu, R. F. Johnson, A. B. Perez, Y. Yang, and S. Schenker. Acyclovir transport by the human placenta. J. Lab. Clin. Med. 120:885–892 (1992).

    Google Scholar 

  31. K. Inui, T. Terada, S. Masuda, and H. Saito. Physiological and pharmacological implications of peptide transporters, PEPT1 and PEPT2. Nephrol Dial Transplant. 15:11–13 (2000).

    Google Scholar 

  32. R. Liang, Y. J. Fei, P. D. Prasad, S. Ramamoorthy, H. Han, T. L. Yang-Feng, M. A. Hedizer, V. Ganapathy, and F. H. Leibach. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270: 6456–6463 (1995).

    Google Scholar 

  33. N. Lister, P. D. Bailey, I. D. Collier, C. A. Boyd, and J. R. Bronk. The influence of luminal pH on transport of neutral and charged dipeptides by rat small intestine, in vitro. Biochim. Biophys. Acta. 1324:245–250 (1997).

    Google Scholar 

  34. P. Balimane and P. Sinko. Effect of ionization on the variable uptake of valacyclovir via the human intestinal peptide transporter (hPepT1) in CHO cells. Biopharm. Drug. Dispos. 21:165–174 (2000).

    Google Scholar 

  35. M. Lucas. Determination of acid surface pH in vivo in rat proximal jejunum. Gut 24:734–739 (1983).

    Google Scholar 

  36. S. Nussberger and M. A. Hediger. How peptides cross biological membranes. Exp. Nephrol. 3:211–218 (1995).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, B.S., Mitra, A.K. Mechanism of Corneal Permeation of L-Valyl Ester of Acyclovir: Targeting the Oligopeptide Transporter on the Rabbit Cornea. Pharm Res 19, 1194–1202 (2002). https://doi.org/10.1023/A:1019806411610

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019806411610

Navigation