Skip to main content
Log in

High order methods on Shishkin meshes for singular perturbation problems of convection–diffusion type

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we construct and analyze two compact monotone finite difference methods to solve singularly perturbed problems of convection–diffusion type. They are defined as HODIE methods of order two and three, i.e., the coefficients are determined by imposing that the local error be null on a polynomial space. For arbitrary meshes, these methods are not adequate for singularly perturbed problems, but using a Shishkin mesh we can prove that the methods are uniformly convergent of order two and three except for a logarithmic factor. Numerical examples support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.B. Andréiev and N.V. Kopteva, A study of difference schemes with the first derivate approximated by a central difference ratio, Comput. Math. Math. Phys. 36 (1996) 1065–1078.

    MathSciNet  Google Scholar 

  2. A.S. Bakhvalov, On the optimization of methods for solving boundary value problems with a boundary layer, U.S.S.R. Comput. Math. Math. Phys. 9 (1969) 139–166.

    Article  Google Scholar 

  3. C. Clavero, F. Lisbona and J.J.H. Miller, Uniform convergence of arbitrary order on nonuniform meshes for a singularly perturbed boundary value problem, J. Comput. Appl. Math. 59 (1995) 155–171.

    Article  MATH  MathSciNet  Google Scholar 

  4. E.C. Gartland, Uniform high-order difference schemes for a singularly perturbed two point boundary value problem, Math. Comp. 48 (1987) 551–564.

    Article  MATH  MathSciNet  Google Scholar 

  5. E.C. Gartland, Graded-mesh difference schemes for singularly perturbed two-point boundary value problems, Math. Comp. 51 (1988) 631–657.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Herceg, Uniform fourth order difference scheme for a singular perturbation problem, Numer. Math. 56 (1990) 675–693.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978) 1025–1039.

    Article  MATH  MathSciNet  Google Scholar 

  8. N.V. Kopteva, On the convergence, uniform with respect to a small parameter, of a four-point scheme for a one-dimensional stationary convection–diffusion equation, Differential Equations 32 (1997) 958–964.

    MathSciNet  Google Scholar 

  9. R.E. Lynch and J.R. Rice, A high-order difference method for differential equations, Math Comp. 34 (1980) 333–372.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.M. Melenk and C. Schwab, The hp streamline diffusion finite element method for convection dominated problems in one space dimension, Research Report No. 98-10, Seminar für Angewandte Mathematik, Zurich (October 1998).

  11. J.J.H. Miller, E. O'Riordan and G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems. Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (World Scientific, Singapore, 1996).

    MATH  Google Scholar 

  12. M. Nikolova and O. Axelsson, Uniform in ɛ convergence of defect-correction method for convection–diffusion problems, Report No. 9905, Department of Mathematics, University of Nijmegen (February 1999).

  13. H.G. Roos, Layer-adapted grids for singular perturbation problems, ZAMM 78 (1998) 291–309.

    Article  MATH  MathSciNet  Google Scholar 

  14. H.G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations (Springer, Berlin, 1996).

    MATH  Google Scholar 

  15. G.I. Shishkin, A difference scheme on a non-uniform mesh for a differential equation with a small parameter in highest derivative, U.S.S.R. Comput. Math. Math. Phys. 23 (1983) 59–66.

    MATH  MathSciNet  Google Scholar 

  16. G.I. Shishkin, Grid approximation of singularly perturbed boundary value problems with convective terms, Soviet J. Numer. Anal. Math. Modeling 5 (1990) 173–187.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Stynes and H.G. Roos, The midpoint upwind scheme, Appl. Numer. Math. 23 (1997) 361–374.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Stynes and L. Tobiska, A finite difference analysis of a streamline diffusion method on a Shishkin mesh, to appear in Numer. Algorithms.

  19. R. Vulanovic, On a numerical solution of a type of singularly perturbed problem by using a special discretization mesh, Univ. Novom Sadu Zb. Rad. Prirod., Mat. Fak Ser. Mat. 13 (1983) 187–201.

  20. R. Vulanovic, Non-equidistant generalizations of the Gushchin–Shennikov scheme, ZAMM 67 (1987) 625–632.

    MATH  MathSciNet  Google Scholar 

  21. P. Wesseling, Uniform convergence of discretization error for a singular perturbation problem, Numer. Methods for Partial Differential Equations 12 (1996) 657–671.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clavero, C., Gracia, J. & Lisbona, F. High order methods on Shishkin meshes for singular perturbation problems of convection–diffusion type. Numerical Algorithms 22, 73–97 (1999). https://doi.org/10.1023/A:1019150606200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019150606200

Navigation