Skip to main content
Log in

Synthesis and Pharmacokinetics of a New Liver-Specific Carrier, Glycosylated Carboxymethyl-Dextran, and Its Application to Drug Targeting

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

To develop a new carrier system for hepatic targeting, carboxymethyl-dextran (CMD) was modified with galactose and mannose residues (Gal-CMD, Man-CMD), and their disposition characteristics were studied in mice using 14C-labeled dextran. At a dose of 1 mg/kg, i.v.-injected Gal-CMD and Man-CMD rapidly accumulated in the liver parenchymal and nonparenchymal cells, respectively, because of their preferential uptake via carbohydrate receptors in these cells. Pharmacokinetic analysis revealed that their uptake rates were sufficiently large for selective drug targeting. Targeting of cytosine β-D-arabinoside (araC) was studied using Gal-CMD as a specific carrier to the hepatocytes. From the conjugate of araC with Gal-CMD, araC was released with a half-life of 36 hr in phosphate buffer (pH 7.4) and 23 hr in plasma. An in vivo biodistribution study demonstrated a disposition profile of the conjugated araC similar to that of the carrier, and selective delivery to hepatocytes of up to 80% of the dose was achieved. These findings suggest that glycosylated CMDs are carriers with a high affinity to liver parenchymal or nonparenchymal cells without any affinity to other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Ashwell and A. G. Morell. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 41:99–128 (1974).

    Google Scholar 

  2. G. Ashwell and J. Harford. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51:531–554 (1982).

    Google Scholar 

  3. R. J. Fallon and A. L. Schwartz. Receptor-mediated delivery of drugs to hepatocytes. Adv. Drug Deliv. Rev. 4:49–63 (1989).

    Google Scholar 

  4. S. Gordon and S. Rabinowitz. Macrophages as targets for drug delivery. Adv. Drug Deliv. Rev. 4:27–47 (1989).

    Google Scholar 

  5. D. K. F. Meijer and P. van der Sluijs. Covalent and noncovalent protein binding of drugs: Implications for hepatic clearance, storage, and cell-specific drug delivery. Pharm. Res. 6:105–118 (1989).

    Google Scholar 

  6. L. Fiume, A. Mattioli, C. Busi, P. G. Balboni, G. Barbanti-Brodano, J. de Vries, R. Altmann, and Th. Wieland. Selective inhibition of ectromelia virus DNA synthesis in hepatocytes by adenine-9-β-D-arabinofuranoside (ara-A) and adenine-9-β-D-arabinofuranoside 5′-monophosphate (ara-AMP) conjugated to asialofetuin. FEBS Lett. 116:185–188 (1980).

    Google Scholar 

  7. L. Fiume, B. Bassi, C. Busi, A. Mattioli, and G. Spinosa. Drug targeting in antiviral chemotherapy. A chemically stable conjugate of 9-β-D-arabinofuranosyl-adenine 5′-monophosphate with lactosaminated albumin accomplishes a selective delivery of the drug to liver cells. Biochem. Pharmacol. 35:967–972 (1986).

    Google Scholar 

  8. G. Chaudhuri, A. Mukhopadhyay, and S. K. Basu. Selective delivery of drugs to macrophages through a highly specific receptor. An efficient chemotherapeutic approach against leishmaniasis. Biochem. Pharmacol. 38:2995–3002 (1989).

    Google Scholar 

  9. L. Fiume, B. Bassi, C. Busi, A. Mattioli, G. Spinosa, and H. Faulstich. Galactosylated poly(L-lysine) as a hepatotropic carrier of 9-β-D-arabinofuranosyladenine 5′-monophosphate. FEBS Lett. 203:203–206 (1986).

    Google Scholar 

  10. R. Duncan, P. Kopečtová, J. Strohalm, I. C. Hume, J. B. Lloyd, and J. Kopeček. Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. II. Evaluation of daunomycin conjugates in vivo against L1210 leukaemia. Br. J. Cancer 57:147–156 (1988).

    Google Scholar 

  11. M. Nishikawa, Y. Ohtsubo, J. Ohno, T. Fujita, Y. Koyama, F. Yamashita, M. Hashida, and H. Sezaki. Pharmacokinetics of receptor-mediated hepatic uptake of glycosylated albumin in mice. Int. J. Pharm. 85:75–85 (1992).

    Google Scholar 

  12. T. Fujita, M. Nishikawa, C. Tamaki, Y. Takakura, M. Hashida, and H. Sezaki. Targeted delivery of human recombinant superoxide dismutase by chemical modification with mono-and polysaccharide derivatives. J. Pharmacol. Exp. Ther. 263:971–978 (1992).

    Google Scholar 

  13. L. Fiume, C. Busi, P. Preti, and G. Spinosa. Conjugates of ara-AMP with lactosaminated albumin: A study on their immunogenicity in mouse and rat. Cancer Drug Deliv. 4:145–150 (1987).

    Google Scholar 

  14. M. Hashida, A. Kato, Y. Takakura, and H. Sezaki. Disposition and pharmacokinetics of a polymeric prodrug of mitomycin C, mitomycin C-dextran conjugate, in the rat. Drug Metab. Dispos. 12:482–499 (1984).

    Google Scholar 

  15. Y. Takakura, A. Takagi, M. Hashida, and H. Sezaki. Disposition and tumor localization of mitomycin C-dextran conjugates in mice. Pharm. Res. 4:293–300 (1987).

    Google Scholar 

  16. Y. Takakura, R. Atsumi, M. Hashida, and H. Sezaki. Development of a novel polymeric prodrug of mitomycin C, mitomycin C-dextran conjugate with anionic charge. II. Disposition and pharmacokinetics following intravenous and intramuscular administration. Int. J. Pharm. 37:145–154 (1987).

    Google Scholar 

  17. H. Sezaki, Y. Takakura, and M. Hashida. Soluble macromolecular carriers for the delivery of antitumour drugs. Adv. Drug Deliv. Rev. 3:247–266 (1989).

    Google Scholar 

  18. Y. Takakura, T. Fujita, M. Hashida, and H. Sezaki. Disposition characteristics of macromolecules in tumor-bearing mice. Pharm. Res. 7:339–346 (1990).

    Google Scholar 

  19. C. Larsen. Dextran prodrugs—structure and stability in relation to therapeutic activity. Adv. Drug Deliv. Rev. 3:103–154 (1989).

    Google Scholar 

  20. M. Nishikawa, F. Yamashita, Y. Takakura, M. Hashida, and H. Sezaki. Demonstration of receptor-mediated hepatic uptake of dextran in mice. J. Pharm. Pharmacol. 44:396–401 (1992).

    Google Scholar 

  21. Y. C. Lee, C. P. Stowell, and M. K. Krantz. 2-imino-2-methoxyethyl 1-thioglycosides: New reagents for attaching sugars to proteins. Biochemistry 15:3956–3963 (1976).

    Google Scholar 

  22. P. D. G. Dean, P. H. Rowe, and D. Exley. Preparation of 6-oxoestriol-6-[O-(carboxymethyl)-oxime] and 6-oxoestrone 6-[O-(carboxymethyl)oxime]-bovine serum albumin conjugates. Steroids Lipids Res. 3:82–89 (1972).

    Google Scholar 

  23. R. W. Mowry and C. M. Millican. A histochemical study of the distribution and fate of dextran in tissues of the mouse. Am. J. Pathol. 29:523–540 (1953).

    Google Scholar 

  24. R. G. Melton, C. N. Wiblin, A. Baskerville, R. L. Foster, and R. F. Sherwood. Covalent linkage of carboxypeptidase G2 to soluble dextrans. II. In vivo distribution and fate of conjugates. Biochem. Pharmacol. 36:113–121 (1987).

    Google Scholar 

  25. M. S. Brown, S. K. Basu, J. R. Falck, Y. K. Ho, and J. L. Goldstein. The scavenger cell pathway for lipoprotein degradation: Specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J. Supramol. Struct. 13:67–81 (1980).

    Google Scholar 

  26. J. Drobník. Biodegradable soluble macromolecules as drug carriers. Adv. Drug Deliv. Rev. 3:229–245 (1989).

    Google Scholar 

  27. P. H. Schlesinger, J. S. Rodman, T. W. Doebber, P. D. Stahl, Y. C. Lee, C. P. Stowell, and T. B. Kuhlenschmidt. The role of extra-hepatic tissues in the receptor-mediated plasma clearance of glycoproteins terminated by mannose or N-acetylglucosamine. Biochem. J. 192:597–606 (1980).

    Google Scholar 

  28. D. R. Vera, K. A. Krohn, R. C. Stadalnik, and P. O. Scheibe. Tc-99m galactosyl-neoglycoalbumin: In vitro characterization of receptor-mediated binding. J. Nucl. Med. 25:779–787 (1984).

    Google Scholar 

  29. C. R. McBroom, C. H. Colleen, H. Samanen, and I. J. Goldstein. Carbohydrate antigens: Coupling of carbohydrates to proteins by diazonium and phenylisothiocyanate reactions. Methods Enzymol. 28:212–219 (1972).

    Google Scholar 

  30. M. Monsigny, C. Kieda, and A. C. Roche. Membrane glycoproteins glycolipids and membrane lectins as recognition signals in normal and malignant cells. Biol. Cell 47:95–110 (1983).

    Google Scholar 

  31. R. W. Jansen, G. Molema, T. L. Ching, R. Oosting, G. Harms, F. Moolenaar, M. J. Hardonk, and D. K. F. Meijer. Hepatic endocytosis of varous types of mannose-terminated albumins. What is important, sugar recognition, net charge, or the combination of these features. J. Biol. Chem. 266:3343–3348 (1991).

    Google Scholar 

  32. J. A. Summerfield, J. Vergalla, and E. A. Jones. Modulation of a glycoprotein recognition system on rat hepatic endothelial cells by glucose and diabetes mellitus. J. Clin. Invest. 69:1337–1347 (1982).

    Google Scholar 

  33. D. H. W. Ho and E. Frei. Clinical pharmacology of 1-β-D-arabinofuranosyl cytosine. Clin. Pharmacol. Ther. 12:944–954 (1971).

    Google Scholar 

  34. Y. Kato, M. Saito, H. Fukushima, Y. Takeda, and T. Hara. Antitumor activity of 1-β-D-arabinofuranosylcytosine conjugated with polyglutamic acid and its derivative. Cancer Res. 44:25–30 (1984).

    Google Scholar 

  35. W. C. Shen and H. J. P. Ryser. Cis-aconityl spacer between daunomycin and macromolecular carriers: A model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biophys. Res. Commun. 102:1048–1054 (1981).

    Google Scholar 

  36. A. Trouet, M. Masquelier, R. Baurain, and D. D. D. Campeneere. A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: In vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 79:626–629 (1982).

    Google Scholar 

  37. G. W. Camiener and C. G. Smith. Studies of the enzymatic deamination of cytosine arabinoside. I. Enzymatic distribution and species specificity. Biochem. Pharmacol. 14:1405–1416 (1965).

    Google Scholar 

  38. R. Duncan, H. C. Cable, P. Rejmanová, J. Kopeček, and J. B. Lloyd. Tryosinamide residues enhance pinocytic capture of N-(2-hydroxypropyl)methacrylamide copolymers. Biochim. Biophys. Acta 799:1–8 (1984).

    Google Scholar 

  39. T. Sawamura, H. Nakada, H. Hazama, Y. Shiozaki, Y. Sameshima, and Y. Tashiro. Hyperasialoglycoproteinemia in patients with chronic liver diseases and/or liver cell carcinoma. Gastroenterology 87:1217–1221 (1984).

    Google Scholar 

  40. Y. J. Schneider, J. Abarca, E. Aboud-Pirak, R. Baurain, F. Ceulemans, D. Deprez-De Campeneere, B. Lesur, M. Masquelier, C. Otte-Slachmuylder, D. Rolin-van Swieten, and A. Trouet. Drug targeting in human cancer chemotherapy. In G. Gregoriadis, G. Poste, J. Senior, and A. Trouet, (eds.), Receptor-Mediated Targeting of Drugs, NATO ASI Series A, Life Sciences Vol. 82, Plenum Press, New York, 1984, pp. 1–25.

    Google Scholar 

  41. C. Eisenberg, N. Seta, M. Appel, G. Feldman, G. Durand, and J. Feger. Asialoglycoprotein receptor in human isolated hepatocytes from normal liver and its apparent increase in liver with histological alterations. J. Hepatol. 13:305–309 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikawa, M., Kamijo, A., Fujita, T. et al. Synthesis and Pharmacokinetics of a New Liver-Specific Carrier, Glycosylated Carboxymethyl-Dextran, and Its Application to Drug Targeting. Pharm Res 10, 1253–1261 (1993). https://doi.org/10.1023/A:1018949109004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018949109004

Navigation