Skip to main content
Log in

The Effect of Cyclodextrins on the Stability of Peptides in Nasal Enzymic Systems

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Leucine enkephalin (YGGFL) undergoes rapid degradation in sheep nasal mucosa to yield GGFL which is further degraded to FL. The activity of the nasal mucosal homogenate against YGGFL and GGFL (t1/212 and 7 min) was significantly greater than that observed with a nasal wash fluid (t1/2 40 and 13 min). The effect of cyclodextrins on the rate of degradation of FGG and YGGFL by leucine aminopeptidase (LAP) and of GGF by carboxypeptidase A (CPA) was monitored. Little effect was observed with FGG (with LAP) but the half-life of YGGFL (with LAP) was extended from ~44 min to ~75 min in the presence of a 25-fold excess of β-cyclodextrin. The stability of GGF (with CPA) was also enhanced; an effect was observable with a 5-fold excess of cyclodextrin and the half-life could be extended by 40–75%. An equation is presented which allows the estimation of the concentration of free peptide in the peptide-cyclodextrin solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. W. Chien, K. S. E. Su, and S. Chang. In Drugs and the pharmaceutical sciences, volume 39, Nasal systemic delivery, Marcel Dekker Inc, New York and Basel. 27–37.(1989).

    Google Scholar 

  2. M. A. Sarkar. Drug metabolism in nasal mucosa. Pharm. Res., 9:1–9 (1992).

    Google Scholar 

  3. A. A. Hussain, J. Faraj, Y. Aramaki, and J. E. Truelove. Hydrolysis of leucine enkephalin in the nasal cavity of the rat—a possible factor in the low bioavailability of nasally administered peptides. Biochem. Biophys. Res. Comm., 133: 923–928 (1985).

    Google Scholar 

  4. S. Hirai, T. Yashiki, T. Matsuzawa, and H. Mima. Absorption of drugs from the nasal mucosa of the rat. Int. J. Pharm., 7: 317–325 (1981).

    Google Scholar 

  5. R. E. Stratford, and V. H. L. Lee. Aminopeptidase activity in homogenates of various absorptive mucosae in the albino rabbit: implications in peptide delivery. Int. J. Pharm., 30: 73–82 (1986).

    Google Scholar 

  6. S. Dodda Kashi, and V. H. L. Lee. Enkephalin hydrolysis in homogenates of various absorptive mucosae of the albino rabbit: similarities in rates and involvement of aminopeptidases. Life Sci., 38:2019–2028 (1986).

    Google Scholar 

  7. A. Yamamoto, A. M. Luo, and V. H. L. Lee. Subcellular distribution of mucosal proteolytic activities against insulin. Pharm. Res., 5: S-107 (1988).

    Google Scholar 

  8. A. P. Sayani, I. K. Chun, and Y. W. Chien. Transmucosal delivery of leucine-enkephalin—stabilization in rabbit enzyme extracts and enhancement of permeation through mucosae. J. Pharm. Sci., 82:1179–1185 (1993).

    Google Scholar 

  9. O. Bekers, E. V. Uijtendaal, J. H. Beijnen, A. Bult, and W. J. M. Underberg. Cyclodextrins in the Pharmaceutical Field. Drug Develop. Ind. Pharm., 17: 1502–1549 (1991).

    Google Scholar 

  10. K. Uekama, and M. Otagini. Cyclodextrins in drug carrier systems, Crit. Rev. Therap. Drug Carrier Systems, 3: 1–40 (1987).

    Google Scholar 

  11. C. Torricelli, A. Martini, L. Muggetti, M. Eli, and R. DePonti. Stability studies on steroidal/β-cyclodextrin kneaded systems. Int. J. Pharm., 75: 147–153 (1991).

    Google Scholar 

  12. T. Tokumura, Y. Tsushima, K. Tatsuishi, M. Kayano, Y. Machida, and T. Nagai. Enhancement of the bioavailability of cinnarizine from its β-cyclodextrin complex for oral administration with L-isoleucine as a competing agent. Chem. Pharm. Bull., 34: 1275–1279 (1986).

    Google Scholar 

  13. N. G. M. Schipper, J. C. Verhoef, L. M. Delannoy, S. G. Romeijn, J. H. Brakkee, V. M. Wiegant, W. H. Gispen, and F. W. H. M. Merkus. Nasal administration of an ACTH(4–9) peptide analog with dimethyl-β-cyclodextrin as an absorption enhancer—pharmacokinetics and dynamics. Brit. J. Pharmacol., 110: 1335–1340 (1993).

    Google Scholar 

  14. N. G. M. Schipper, S. G. Romeijn, J. C. Verhoef, and F. W. H. M. Merkus. Nasal insulin delivery with dimethyl-β-cyclodextrin as an absorption enhancer in rabbits—powder more effective than liquid formulations. Pharm. Res., 5: 682–686 (1993).

    Google Scholar 

  15. T. Irie, K. Wakamatsu, H. Arima, H. Aritomi, and K. Uekama. Enhancing effects of cyclodextrins on nasal absorption of insulin in rats. Int. J. Pharm., 84: 129–139 (1992).

    Google Scholar 

  16. K. Nakanishi, T. Nadai, M. Masada, and K. Miyajama. The effect of cyclodextrins on biological membranes 1. Effect of cyclodextrins on the absorption of a nonabsorbable drug from rat small intestine and rectum. Chem. Pharm. Bull., 38: 1684–1687 (1990).

    Google Scholar 

  17. T. Irie, M. Otagiri, M. Sunada, K. Uekama, Y. Ohtani, Y. Yamada and Y. Sugiyama, Cycodextrin-induced hemolysis and shape changes of human erythrocytes in vitro, J. Pharmacobio-Dynam., 5: 741–744 (1982).

    Google Scholar 

  18. Z. Shao, R. Krishnamoorthy and A. K. Mitra, Cyclodextrins as nasal absorption promoters of insulin—mechanistic evaluation, Pharm. Res., 9: 1157–1163 (1992).

    Google Scholar 

  19. N. G. M. Schipper, J. C. Verhoef, S. G. Romeijn and F. W. H. M. Merkus, Absorption enhancers in nasal insulin delivery and their influence on nasal ciliary functioning, J. Control. Rel., 21: 173–185 (1992).

    Google Scholar 

  20. F. W. H. M. Merkus, N. G. M. Schipper, W. A. J. J. Hermens, S. G. Romeijn and J. C. Verhoef, Absorption enhancers in nasal drug delivery: efficacy and safety, J. Control. Rel., 24: 201–208 (1993).

    Google Scholar 

  21. H. Matsuda, K. Ito, Y. Sato, D. Yoshizawa, M. Tanaka, A. Taki, H. Sumiyoshi, T. Utsuki, F. Hirayama, and K. Uekama. Inclusion complexation of p-hydroxybenzoic acid esters with 2-hydroxylpropyl-β-cyclodextrins. On changes in solubility and antimicrobial activity. Chem. Pharm. Bull., 41: 1448–1452 (1993).

    Google Scholar 

  22. W. J. Irwin, P. A. Holbrook, and M. J. Dey. The Stability of Peptides in Nasal Enzymic Systems, Int. J. Pharm., in press.

  23. M. A. Bradford. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem., 72: 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. N. F. Farraj, B. R. Johansen, S. S. Davis, and L. Illum. Nasal administration of insulin using bioadhesive microspheres as a delivery system. J. Control Rel., 13: 253–261 (1990).

    Google Scholar 

  25. R. K. Barclay, and M. A. Phillipps. Inhibition of Enkephalin-degrading aminopeptidase activity by certain peptides. Biochem. Biophys. Res. Comm., 96: 1732–1737 (1980).

    Google Scholar 

  26. R. Matsas, I. S. Fulcher, A. J. Kennedy and A. J. Turner. Substance P and [Leu]enkephalin are hydrolysed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc. Natl. Acad. Sci., 80: 3111–3115 (1983).

    Google Scholar 

  27. A. A. Hussain, K. Iseki, M. Kagoshima, and L. W. Ditter. Hydrolysis of peptides in the nasal cavity of humans. J. Pharm. Sci., 79: 947–948 (1990).

    Google Scholar 

  28. W. J. Irwin. Kinetics of drug decomposition: Basic computer solutions; Elsevier. Amsterdam. 75–91, 175–181 (1990).

    Google Scholar 

  29. Y. Inoue, and Y. Miyata. Formation and molecular dynamics of cycloamylose inclusion complexes with phenylalanine. Bull. Soc. Jpn., 54: 809–816 (1981).

    Google Scholar 

  30. M. Suzuki, K. Ito, C. Fushimi, and T. Kondo. A study of cyclodextrin complex formation by a freezing point method. Chem. Pharm. Bull., 41: 942–945 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, W.J., Dwivedi, A.K., Holbrook, P.A. et al. The Effect of Cyclodextrins on the Stability of Peptides in Nasal Enzymic Systems. Pharm Res 11, 1698–1703 (1994). https://doi.org/10.1023/A:1018946829225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018946829225

Navigation