Skip to main content
Log in

Drug Metabolism in the Nasal Mucosa

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Nasal delivery is a potential alternative for systemic availability of drugs restricted to intravenous administration, such as peptide and protein drugs. Although nasal delivery avoids the hepatic first-pass effect, the enzymatic barrier of the nasal mucosa creates a pseudo-first-pass effect. The xenobiotic metabolic activity in the nasal epithelium has been investigated in several species including humans. The Phase I, cytochrome P-450 enzymes have been studied extensively for their toxicological significance, since these enzymes metabolize inhaled pollutants into reactive metabolites which may induce nasal tumors. The cytochrome P-450 activity in the olfactory region of the nasal epithelium is higher even than in the liver, mainly because of a three- to fourfold higher NADPH–cytochrome P-450 reductase content. Phase II activity has also been found in the nasal epithelium. The delivery of peptides and proteins has been hindered by the peptidase and protease activity in the nasal mucosa. The predominant enzyme appears to be aminopeptidase among other exopeptidases and endopeptidases. The absorption of peptide drugs can be improved by using aminoboronic acid derivatives, amastatin, and other enzyme inhibitors as absorption enhancers. It is possible that some of the surfactants, e.g., bile salts, increase absorption by inhibiting the proteolytic enzymes. Thus, in addition to the permeation barriers, there also exists an enzymatic barrier to nasal drug delivery, which is created by metabolic enzymes in the nasal epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. P. Schreider. Comparative anatomy and function of the nasal passages. In C. S. Barrow (ed.), Toxicology of the Nasal Passages, Hemisphere, Washington, D.C., 1986, pp. 1–23.

    Google Scholar 

  2. N. Mygind. Nasal Allergy, Blackwell Scientific, Oxford, 1979.

    Google Scholar 

  3. A. R. Dahl and W. M. Hadley. Cytochrome P-450 dependent monooxygenase activity in nasal membranes of six species. Drug Met. Disp. 11:275–276 (1983).

    Google Scholar 

  4. V. Longo, G. M. Pacifici, G. Panattoni, F. Ursino, and P. G. Gervasi. Metabolism of diethylnitrosamine by microsomes of human respiratory nasal mucosa and liver. Biochem. Pharmacol. 38:1867–1869 (1989).

    Google Scholar 

  5. P. G. Gervasi, V. Longo, F. Ursino, and G. Panattoni. Drug metabolizing enzymes in respiratory mucosa of humans. Comparison with rats. In Proc. 6th Int. Conf. Biochem. Biophys. Cytochrome P-450, Taylor and Francis, London, 1989, pp. 198–199.

    Google Scholar 

  6. D. S. Natusch and J. R. Wallace. Urban aerosol toxicity: The influence of particle size. Science 186:695–699 (1974).

    Google Scholar 

  7. J. A. Swenberg, W. D. Kerns, R. I. Mitchell, E. J. Gralla, and K. L. Pavkov. Induction of squamous cell carcinomas of the rat nasal cavity by inhalation exposure to formaldehyde vapor. Cancer Res. 40:3398–3402 (1980).

    Google Scholar 

  8. K. P. Lee, H. J. Trochimowicz, and C. F. Reinhardt. Induction of nasal tumors in rats exposed to hexamethylphosphoramide (HMPA). Toxicologist 1:128–132 (1981).

    Google Scholar 

  9. S. S. Hecht, C. B. Chen, T. Ohmor, and D. Hoffmann. Comparative carcinogenicity in F344 rats of the tobacco-specific nitrosamines, N′-nitrosonornicotine and 4-(N-methyl-N-nitrosamino)-l-(3-pyridyl)-l-butanone. Cancer Res. 40:298–302 (1980).

    Google Scholar 

  10. J. A. Bond. Some biotransformation enzymes responsible for polycyclic aromatic hydrocarbon metabolism in rat nasal turbinates: Effects on enzyme activities of in vitro modifiers and intraperitoneal and inhalation exposure of rats to inducing agents. Cancer Res 43:4805–4811 (1983).

    Google Scholar 

  11. J. Thyssen, J. Althoff, G. Kimmerle, and U. Mohr. Inhalation studies with benzo(a)pyrene in syrian golden hamsters. J. Natl. Cancer Inst. 66:575–577 (1981).

    Google Scholar 

  12. H. Isaka, H. Yoshi, A. Otsuji, M. Koike, Y. Nagai, M. Koura, K. Sugiyasu, and T. Kanabayashi. Tumors of Sprague-Dawley rats induced by long-term feeding of Phenacetin. Gann 70:29–36 (1979).

    Google Scholar 

  13. A. R. Dahl. The effect of cytochrome P-450 dependent metabolism and other enzyme activities on olfaction. In F. L. Margolis and T. V. Getchell (eds.), Molecular Neurobiology of the Olfactory System, Plenum Press, New York, 1988, pp. 51–70.

    Google Scholar 

  14. E. B. Brittebo, A. Castonguay, J. J. Rafter, B. Kowalski, M. Ahlman, and I. Brandt. In C. S. Barrow (ed.), Toxicology of the Nasal Passages, Hemisphere, Washington, D.C., 1986, pp. 211–234.

    Google Scholar 

  15. G. T. Miwa, S. B. West, and A. Y. H. Lu. Studies on the rate-limiting enzyme component in the microsomal monooxygenase system: Incorporation of purified NADPH-cytochrome c reductase and cytochrome P-450 into rat liver microsomes. J. Biol. Chem. 253:1921–1929 (1978).

    Google Scholar 

  16. X. Ding, D. R. Koop, B. L. Crump, and M. J. Coon. Immunochemical identification of cytochrome P-450 isozyme 3a (P-450ALC) in rabbit nasal and kidney microsomes and evidence for differential induction by alcohol. Mol. Pharmacol. 30:370–378 (1986).

    Google Scholar 

  17. C. J. Reed, E. A. Lock, and F. D. Matteis. NADPH:cytochrome P-450 reductase in olfactory epithelium. Biochem. J. 240:585–592 (1986).

    Google Scholar 

  18. E. B. Brittebo. N-demethylation of aminopyrine by the nasal mucosa in mice and rats. Acta Pharmacol. Toxicol. 51:227–232 (1982).

    Google Scholar 

  19. J. Baron, J. P. Burke, F. P. Guengerich, W. B. Jakoby, and J. M. Voigt. Sites for xenobiotic activation and detoxication within the respiratory tract: Implications for chemically induced toxicity. Toxicol. Appl. Pharmacol. 93:493–505 (1988).

    Google Scholar 

  20. X. Ding and M. J. Coon. Purification and characterization of two unique forms of cytochrome P-450 from rabbit nasal microsomes. Biochemistry 27:8330–8337 (1988).

    Google Scholar 

  21. M. Buiatti, M. Geddes, F. Carnevale, and E. Merier. Nasal cavity and paranasal sinus tumors in woodworkers and shoemakers in Italy compared to other countries. In G. Reznik and S. F. Stinson (eds.), Nasal Tumors in Animals and Men, Vol. I, CRC Press, Boca Raton, Fla., 1983, pp. 111–149.

    Google Scholar 

  22. R. Kato. Mixed function oxidases in microsomes from human liver. In J. B. Schenkman and D. Kupfer (eds.), Hepatic Cytochrome P-450 Monooxygenase Systems, Pergamon Press, Oxford, 1982, pp. 141–145.

    Google Scholar 

  23. A. A. Hussain, S. Hirai, and R. Bawarshi. Nasal absorption of natural contraceptive steroids in rats—progesterone absorption. J. Pharm. Sci. 70:466 (1981).

    Google Scholar 

  24. E. B. Brittebo and J. J. Rafter. Steroid metabolism by rat nasal mucosa: Studies on progesterone and testosterone. J. Steroid. Biochem. 20:1147–1151 (1984).

    Google Scholar 

  25. P. J. Sabourin and A. R. Dahl. Distribution of the FAD-containing monooxygenase in respiratory tract tissues. In M. A. Medinsky and B. A. Muggenburg (eds.), Annual Report LMF-114, National Technical Information Service, Springfield, Va., 1985, p. 156.

    Google Scholar 

  26. M. S. Bogdanffy, H. W. Randall, and K. T. Morgan. Histochemical localization of aldehyde dehydrogenase in the respiratory tract of the Fischer-344 rat. Toxicol. Appl. Pharmacol. 82:560–563 (1985).

    Google Scholar 

  27. J. Baron, J. M. Voigt, T. B. Whitter, T. Bawabata, S. A. Knapp, F. P. Guengerich, and W. B. Jakoby. Identification of intratissue sites for xenobiotic activation and detoxification. In R. Snyder (ed.), Biological Reactive Intermediates III. Molecular and Cellular Mechanisms of Action in Animal Models and Human Disease, Plenum Press, New York, 1988, pp. 324–328.

    Google Scholar 

  28. M. S. Bogdanffy, C. R. Kee, C. A. Hinchman, and B. A. Trela. Metabolism of dibasic esters by rat nasal mucosal carboxylesterase. Drug Metab. Disp. 19:124–129 (1991).

    Google Scholar 

  29. M. S. Bogdanffy, H. W. Randall, and K. T. Morgan. Biochemical quantitation and histochemical localization of carboxylesterase in the nasal passages of the Fischer-344 rat and B6CF1 mouse. Toxicol. Appl. Pharmacol. 88:183–194 (1987).

    Google Scholar 

  30. Y. Pocker, L. Bjorkquist, and D. W. Bjorkquist. Zinc and cobalt bovine carbonic anhydrases. Comparative studies and esterase activity. Biochemistry 16:3967–3973 (1977).

    Google Scholar 

  31. R. N. Bawarshi-Nassar, A. A. Hussain, and P. A. Crooks. Nasal absorption and metabolism of progesterone and 17β-estradiol in the rat. Drug Metab. Disp. 17:248–254 (1989).

    Google Scholar 

  32. P. A. Crooks and L. A. Damani. Drug application to the respiratory tract: Metabolic and pharmacokinetic considerations. In P. R. Byron (ed.), Respiratory Drug Delivery, CRC Press, Boca Raton, Fla., 1989, pp. 61–90.

    Google Scholar 

  33. A. Aceto, C. Di Ilio, S. Angelucci, V. Longo, P. G. Gervasi, and G. Federici. Glutathione transferases in human nasal mucosa. Arch. Toxicol. 63:427–431 (1989).

    Google Scholar 

  34. O. Siddiqui and Y. W. Chien. Nonparenteral administration of peptide and protein drugs. CRC Crit. Rev. Ther. Drug Carr. Syst. 3:195–208 (1989).

    Google Scholar 

  35. G. Fink, G. Gennser, P. Liedhol, J. Thorell, and J. Mulder. Comparison of plasma levels of luteinizing hormone releasing hormone in men after intravenous or intranasal administration. J. Endocr. 63:351–360 (1974).

    Google Scholar 

  36. V. H. L. Lee and A. Yamamoto. Penetration and enzymatic barriers to peptide and protein absorption. Adv. Drug Del. Rev. 4:171–207 (1990).

    Google Scholar 

  37. S. D. Kashi, R. M. Patel, E. Hayakawa, K. Inagaki, and V. H. L. Lee. Mucosal peptide and protein delivery: Proteolytic activities in mucosal homogenates. Proc. 14th Int. Symp. Control. Release Bioact. Mater., 1987, Abstr. No. 13.

  38. R. E. Stratford and V. H. L. Lee. Aminopeptidase activity in homogenates of various absorptive mucosae in the albino rabbit: Implications in peptide delivery. Int. J. Pharm. 30:73 (1986).

    Google Scholar 

  39. S. D. Kashi and V. H. L. Lee. Enkephalin hydrolysis in homogenates of various absorptive mucosae of the albino rabbit: Similarities in rates and involvement of aminopeptidases. Life Sci. 38:2019–2028 (1986).

    Google Scholar 

  40. V. H. Lee. Enzymatic barriers to peptide and protein absorption. CRC Crit. Rev. Ther. Drug Carr. Syst. 5:69–97 (1988).

    Google Scholar 

  41. A. B. Shenvi. α-Aminoboronic acid derivatives: Effective inhibition of aminopeptidases. Biochemistry 25:1286–1291 (1986).

    Google Scholar 

  42. R. Bone, A. B. Shenvi, C. A. Kettner, and D. A. Agard. Serine protease mechanisms: Structure of an inhibitory complex of α-lytic protease and a tightly bound peptide boronic acid. Biochemistry 26:7609–7614 (1987).

    Google Scholar 

  43. M. A. Hussain, C. A. Koval, A. B. Shenvi, and B. J. Aungst. An aminoboronic acid derivative inhibits thymopentin metabolism by mucosal membrane aminopeptidases. Life Sci. 47:227–231 (1990).

    Google Scholar 

  44. M. A. Hussain, A. B. Shenvi, S. M. Rowe, and E. Shefter. The use of α-aminoboronic acid derivatives to stabilize peptide drugs during their intranasal absorption. Pharm. Res. 6:186–189 (1989).

    Google Scholar 

  45. V. H. L. Lee. Enzymatic barriers to peptide and protein absorption and the use of penetration enhancers to modify absorption. In S. S. Davis, L. Illum, and E. Tomlinson (eds.), Delivery Systems for Peptide Drugs, Plenum, New York, 1986, pp. 87–104.

    Google Scholar 

  46. D. T. O'Hagan, H. Critchley, N. F. Faraj, A. N. Fisher, B. R. Johansen, S. S. Davis, and L. Illum. Nasal absorption enhancers for biosynthetic human growth hormone in rats. Pharm. Res. 7:771–776 (1990).

    Google Scholar 

  47. J. C. Powers and J. W. Harper. Inhibitors of metalloproteases. In A. J. Barrett and G. Salvesen (eds.), Proteinase Inhibitors, Elsevier, New York, 1986, pp. 272–279.

    Google Scholar 

  48. M. J. M. Duerloo, W. A. J. J. Hermens, S. G. Romeyn, J. C. Verhoef, and F. W. H. M. Merkus. Absorption enhancement of intranasally administered insulin by sodium taurodihydrofusidate (STDHF) in rabbits and rats. Pharm. Res. 6:853–856 (1989).

    Google Scholar 

  49. P. A. Crooks, B. D. Bowdy, C. N. Reinsel, E. T. Iwamoto, and M. N. Gillespie. Structure activity evidence against opiate receptor involvement in leu-enkephalin induced pulmonary vasoconstriction. Biochem. Pharmacol 33:4095–4097 (1984).

    Google Scholar 

  50. A. Hussain, J. Faraj, Y. Aramaki, and J. E. Truelove. Hydrolysis of leucine enkephalin in the nasal cavity of the rat—a possible factor in the low bioavailability of nasally administered peptides. Biochem. Biophys. Res. Commun. 133:923–925 (1985).

    Google Scholar 

  51. G. S. M. Duchateau, J. Zuidema, and F. W. Merkus. Bile salts and intranasal drug absorption. Int. J. Pharm. 31:193–196 (1986).

    Google Scholar 

  52. S. Hirai, T. Yashiki, and H. Mima. Effect of surfactants on the nasal absorption of insulin in rats. Int. J. Pharm. 9:165–169 (1981).

    Google Scholar 

  53. S. Muranishi. Modification of intestinal absorption of drugs by lipoidal adjuvants. Pharm. Res. 3:108–110 (1985).

    Google Scholar 

  54. H. Kajii, T. Horie, M. Hayashi, and S. Awazu. Fluorescence study on the interaction of salicylate with rat small intestinal epithelial cells: possible mechanism for the promoting effects of salicylate on drug absorption in vivo. Life Sci. 37:523–525 (1985).

    Google Scholar 

  55. M. Inagaki, Y. Sakakura, H. Itoh, K. Ukai, and Y. Miyoshi. Macromolecular permeability of the tight junction of the human nasal mucosa. Rhinology 23:213 (1985).

    Google Scholar 

  56. A. E. Pontiroli, A. Secchi, and M. Alberetto. Alternative routes of peptide hormone administration. Special Topics Endocrinol. Metab. 7:77–99 (1985).

    Google Scholar 

  57. G. S. Gordon, A. C. Moses, R. D. Sliver, J. S. Flier, and M. C. Carey. Nasal absorption of insulin: enhancement by hydrophobic bile salts. Proc. Natl. Acad. Sci. USA 82:7419–7423 (1985).

    Google Scholar 

  58. D. Gallardo, J. P. Longenecker, and V. H. L. Lee. Protease inhibition as an additional mechanism for the nasal absorption enhancement effect of sodium taurodihydrofusidate. Proc. 14th Int. Symp. Control. Release Bioact. Mater. 1987, Abstr. 30.

  59. A. E. Pontiroli, M. Alberetto, A. Calderara, E. Pajetta, and G. Pozza. Nasal administration of glucagon and human calcitonin to healthy subjects: A comparison of powders and spray solutions and of different enhancing agents. Eur. J. Clin. Pharmacol. 37:427–430 (1989).

    Google Scholar 

  60. V. H. L. Lee. Trends in peptide and protein drug delivery. Biopharm. 4:22–26 (1991).

    Google Scholar 

  61. S. T. Anik, G. McRae, C. Nerenberg, A. Worden, J. Foerman, J. Y. Hwang, S. Kushinky, R. E. Jones, and B. Vickery. Nasal absorption of nafarelin acetate, the decapeptide [D-Nal(2)6]LHRH, in rhesus monkeys. I. J. Pharmacol. Sci. 73:684–685 (1983).

    Google Scholar 

  62. T. Walle, U. K. Walle, and L. S. Olanoff. Quantitative account of propranolol metabolism in urine of normal man. Drug Metab. Disp. 13:204–209 (1985).

    Google Scholar 

  63. A. Hussain, T. Foster, S. Hirai, T. Kashiharar, R. Batenhoist, and M. Jone. Nasal absorption of propranolol in humans. J. Pharm. Sci. 69:1240–1242 (1980).

    Google Scholar 

  64. R. Salzman, J. E. M. Manson, G. T. Griffin, R. Kimmerle, N. Ruderman, A. McCall, E. I. Stoltz, C. Mullin, D. Small, J. Armstrong, and J. C. Melby. Intranasal aerosolized insulin. Mixed meal studies and long-term use in type I diabetes. N. Engl. J. Med. 312:1078–1081 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, M.A. Drug Metabolism in the Nasal Mucosa. Pharm Res 9, 1–9 (1992). https://doi.org/10.1023/A:1018911206646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018911206646

Navigation