Skip to main content
Log in

A Drug Absorption Model Based on the Mucus Layer Producing Human Intestinal Goblet Cell Line HT29-H

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A new drug absorption model based on monolayers of the human intestinal goblet cell line HT29-H grown on permeable filters has been characterized. HT29-H cells have been shown (a) to form monolayers of mature goblet cells under standard cell culture conditions, (b) to secrete mucin molecules, (c) to produce a mucus layer that covers the apical cell surface, and (d) that this mucus layer is a significant barrier to the absorption of the lipophilic drug testosterone. This is the first demonstration of an intact human mucus layer with functional barrier properties produced in cell culture. The results indicate that monolayers of HT29-H cells provide a valuable complement to mucus-free drug absorption models based on absorptive cell lines such as Caco-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Artursson. Cell cultures as models for drug absorption across the intestinal mucosa. Crit. Rev. Ther. Drug Carrier Syst. 8(4):305–330 (1991).

    Google Scholar 

  2. M. Neutra and D. Louvard. Differentiation of intestinal cells in vitro. In K. S. Maltin and J. D. Valentich (eds.), Modern Cell Biology, Vol. 8, Alan R. Liss, New York, 1989, pp. 363–398.

    Google Scholar 

  3. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).

    CAS  PubMed  Google Scholar 

  4. P. Artursson. Epithelial transport of drugs in cell culture. I. A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).

    Google Scholar 

  5. G. Wilson, I. F. Hassan, C. J. Dix, I. Williamson, R. Shah, M. Mackay, and P. Artursson. Transport and permeability properties of human Caco-2 cells: An in vitro model of the intestinal epithelial cell barrier. J. Control. Release 11:25–40 (1990).

    Google Scholar 

  6. A. Zweibaum, M. Laburthe, E. Grasset, and D. Louvard. Use of cultured cell lines in studies of intestinal cell differentiation and function. In M. Field and R. A. Frizzell (eds.), Handbook of Physiology, The Gastrointestinal System, IV, American Physiological Society, Oxford University Press, New York, 1991.

    Google Scholar 

  7. C. Huet, C. Sahuquillo-Merino, E. Coudrier, and D. Louvard. Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT29) provide new models for cell polarity and terminal differentiation. J. Cell Biol. 105:345–357 (1987).

    Google Scholar 

  8. J.-J. Maoret, J. Font, C. Augeron, P. Codogno, C. Bauvy, M. Aubery, and C. L. Laboisse. A mucus-secreting human colonic cancer cell line. Biochem. J. 258:793–799 (1989).

    Google Scholar 

  9. T. E. Phillips, C. Huet, P. R. Bilbo, D. K. Podolsky, D. Louvard, and M. Neutra. Human intestinal goblet cells in monolayer culture: Characterization of a mucus-secreting subclone derived from the HT29 colon adenocarcinoma cell line. Gastroenterology 94:1390–1403 (1988).

    Google Scholar 

  10. I. Roumagnac and C. L. Laboisse. A mucus-secreting human colonic epithelial cell line responsive to cholinergic stimulation. Biol. Cell 61:65–68 (1987).

    Google Scholar 

  11. K.-M. Kreusel, M. Fromm, J.-D. Schulzke, and U. Hegel. Cl secretion in epithelial monolayers of mucus forming human colon cells. Am. J. Physiol. 261:C574–C582 (1991).

    Google Scholar 

  12. D. Winne and W. Verheyen. Diffusion coefficient in native gel of rat small intestine. J. Pharm. Pharmacol. 42:507–519 (1990).

    Google Scholar 

  13. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Comm. 175:880–885 (1991).

    Google Scholar 

  14. F. Nimmerfall and J. Rosenthaler. Significance of the goblet-cell mucin layer, the outermost luminal barrier to passage through the gut wall. Biochem. Biophys. Res. Comm. 94:960–966 (1980).

    Google Scholar 

  15. J. Fogh, J. M. Fogh, and T. J. Orfeo. One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59:221–226 (1977).

    Google Scholar 

  16. I. Carlstedt, H. Lindgren, J. K. Sheehan, U. Ulmsten, and L. Wingerup. Isolation and characterization of human cervical-mucus glycoprotein. Biochem. J. 211:13–22 (1983).

    Google Scholar 

  17. S. Kerss, A. Allen, and A. Garner. A simple method for measuring thickness of the mucus gel layer adherent to rat, frog and human gastric mucosa: Influence of feeding, prostaglandin, N-acetylcysteine and other agents. Clin. Sci. 63:187–195 (1982).

    Google Scholar 

  18. B. Sandzen, H. Blom, and S. Dahlgren. Gastric mucus gel layer thickness measured by direct light microscopy. Scand. J. Gastroenterol. 23:1160–1164 (1988).

    Google Scholar 

  19. L. Szenkutti and A. Eggers. Stabilization of pre-epithelial mucus gel in cryostat sections from rat colon with celloidin. Stain Tech. 65:179–181 (1990).

    Google Scholar 

  20. M. R. Neutra, R. J. Grand, and J. S. Trier. Glycoprotein synthesis, transport, and secretion by epithelial cells of human rectal mucosa. Lab. Invest. 36:535–546 (1977).

    Google Scholar 

  21. J. F. Forstner, N. W. Roomi, R. E. F. Fahim, and G. G. Forstner. Cholera toxin stimulates secretion of immunoreactive intestinal mucin. Am. J. Physiol. 240:G10–G16 (1981).

    Google Scholar 

  22. A. Allen, A. Garner, D. Hutton, and S. McQueen. Thickness of the adherent mucus gel layer in the stomach and duodenum: Comparison with surface pH gradients in the rat and frog. J. Physiol. 341:66–67P (1983).

    Google Scholar 

  23. T. Sakata and M. v. Engelhardt. Luminal mucin in the large intestine of mice, rats and guinea pigs. Cell Tissue Res. 219:629–635 (1981).

    Google Scholar 

  24. J. L. Madara and J. S. Trier. Structure and permeability of goblet cell tight junctions in rat small intestine. J. Membr. Biol. 66:145–157 (1982).

    Google Scholar 

  25. T. Lesuffleur, A. Barbat, C. Luccioni, J. Beaumatin, M. Clair, A. Kornowski, E. Dussaulx, B. Dutrillaux, and A. Zweibaum. Dihydrofolate reductase gene amplification-associated shift of differentiation in methotrexate-adapted HT-29 cells. J. Cell Biol. 115:1409–1418 (1991).

    Google Scholar 

  26. D. W. Powell. Intestinal water and electrolyte transport. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract, 2nd ed., Raven Press, New York, 1987, pp. 1247–1305.

    Google Scholar 

  27. J. D. Allen, G. P. Martin, C. Marriott, I. Hassan, and I. Williamson. Drug transport across a novel mucin secreting cell model: Comparison with the Caco-2 cell system. J. Pharm. Pharmacol. 43:63P (1991).

    Google Scholar 

  28. P. Artursson and C. Magnusson. Epithelial transport of drugs in cell culture. II. Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J. Pharm. Sci. 79:595–600 (1990).

    Google Scholar 

  29. R. D. Specian and M. G. Oliver. Functional biology of intestinal goblet cells. Am. J. Physiol. 260:C183–C193 (1991).

    Google Scholar 

  30. B. W. Barry and M. P. Braybrooks. Influence of a mucin model system upon the bioavailability of phenylbutazone and warfarin sodium from the small intestine. J. Pharm. Pharmacol. 27:74P (1975).

    Google Scholar 

  31. P. Kearney and C. Marriott. The effects of mucus glycoproteins on the bioavailability of tetracycline. II. Binding. Int. J. Pharm. 35:211–217 (1987).

    Google Scholar 

  32. I. Komiya, J. Y. Park, A. Kamani, N. F. H. Ho, and W. I. Higuchi. Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. Int. J. Pharm. 4:249–262 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wikman, A., Karlsson, J., Carlstedt, I. et al. A Drug Absorption Model Based on the Mucus Layer Producing Human Intestinal Goblet Cell Line HT29-H. Pharm Res 10, 843–852 (1993). https://doi.org/10.1023/A:1018905109971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018905109971

Navigation