Skip to main content
Log in

Aqueous Stability of Human Epidermal Growth Factor 1-48

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Human epidermal growth factor 1-48 (hEGF 1-48, Des(49-53)hEGF) is a single chain polypeptide (48 amino acids; 3 disulfide bonds; 5445 Da) possessing a broad spectrum of biologic activity including the stimulation of cell proliferation and tissue growth. In this study, three primary aqueous degradation products of hEGF 1-48 were isolated using isocratic, reverse phase/ion-pair HPLC. The degradation products were characterized using amino acid sequencing, electrospray ionization mass spectrometry, isoelectric focusing, and degradation kinetics. Results indicate that hEGF 1-48 degrades via oxidation (Met21), deamidation (Asn1), and succinimide formation (Asp11). The relative contribution of each degradation pathway to the overall stability of hEGF 1-48 changes as a function of solution pH and storage condition. Succinimide formation at Asp11 is favored at pH < 6 in which aspartic acid is present mostly in its protonated form. Deamidation of Asn1 is favored at pH > 6. The relative contribution of Met21 oxidation is increased with decreasing temperature, storage as a frozen solution (−20°C), and exposure to fluorescent light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. J. Pharm. Res. 6(11):903–918 (1989).

    Google Scholar 

  2. R. Pearlman and T. Nguyen. Pharmaceutics of protein drugs. J. Pharm. Pharmacol. 44(Suppl. 1):178–185 (1992).

    Google Scholar 

  3. R. D. Schmid. Stabilized soluble enzymes. Adv. Biochem. Eng. 12:41–118 (1979).

    Google Scholar 

  4. G. Carpenter and S. Cohen. Epidermal Growth Factor. Ann. Rev. Biochemistry 48:193–216 (1979).

    Google Scholar 

  5. C. M. Stoscheck and L. E. Knig, Jr. Role of epidermal growth factor in carcinogenesis. Cancer Res. 46:1030–1037 (1986).

    Google Scholar 

  6. W. H. Moolenaar. Effects of growth factors on intracellular pH regulation. Ann. Rev. Physiol. 48:363–376 (1986).

    Google Scholar 

  7. R. V. Nardi, A. Guglietta, and I. Parikh. Epidermal growth factor. In S. Benjamin and M. Collen (eds.), Pharmacology of Peptic Ulcer Disease (Handbook of Exp. Pharmacol. Ser., Vol. 99), Spr-Verlag, 1991, pp. 37–53.

  8. M. J. O'Hara and E. C. Nice. Hydrophobic high-performance liquid chromatography of hormonal polypeptides and proteins on alkylsilane-bonded silica. J. Chromatogr. 185:413–427 (1979).

    Google Scholar 

  9. I. H Lee, S. Pollack, S. H. Hsu, and J. R. Miksic. Influence of the Mobile Phase on Salmon Calcitonin Analysis by Reversed-Phase Liquid Chromatography. J. Chrom. Sci. 29:136–140 (1991).

    Google Scholar 

  10. Y. M. Torchinsky, W. Wittenberg, and D. Metzler. Sulfur in Proteins, Pergamon Press, New York, 1981.

    Google Scholar 

  11. C. George-Nascimento, A. Gyenes, S. M. Halloran, J. Merryweather, P. Valenzuela, K. S. Steimer, F. R. Masiarz, and A. Randolph. Characterization of recombinant human epidermal growth factor produced in yeast. Biochemistry, 27(2):797–802, 1988.

    Google Scholar 

  12. J. K. Cini, C. L. Ace, J. Spaltro, and C. George-Naccimento. Photooxidation of Recombinant Human Epidermal Growth Factor. FASEB J., 6(4):1350 (1992).

    Google Scholar 

  13. M. Hartmanis and A. Engstrom. Occurrence of methionine sulfoxide during production of recombinant human insulin-like growth factor I (IGF-I). In T. E. Hugli (ed.), Techniques in Protein Chemistry, Acad Pr., 1989, pp. 327–333.

  14. D. G. Smyth, W. H. Stein, and S. Moore. On the sequence of residues 11 to 18 in bovine pancreatic ribonuclease. J. Biol. Chem., 237(6):1845–1850 (1962).

    Google Scholar 

  15. R. P. DiAugustine, B. W. Gibson, W. Aberth, M. Kelly, C. M. Ferrua, Y. Tomooka, C. F. Brown, and M. Walker. Evidence for isoaspartyl (deamidated) forms of mouse epidermal growth factor. Anal. Biochem. 165:420–429 (1987).

    Google Scholar 

  16. C. George-Nascimento, J. Lowenson, M. Borissenko, M. Calderon, A. Medina-Selby, J. Kuo, C. Clarke, and A. Randolph. Replacement of a labile aspartyl residue increases the stability of human epidermal growth factor. Biochemistry, 29:9584–9591 (1990).

    Google Scholar 

  17. B. N. Violand, M. R. Schlittler, E. W. Kolodziej, P. C. Toren, M. A. Cabonce, N. R. Siegel, K. L. Duffin, J. F. Zobel, C. E. Smith, and J. S. Tou. Isolation and characterization of porcine somatotropin containing a succinimide residue in place of aspartate129. Protein Science, 1(12):1634–1641 (1992).

    Google Scholar 

  18. S. Clarke, R. C. Stephenson, and J. D. Lowenson. Lability of asparagine and aspartic acid residues in proteins and peptides. In T. J. Ahern and M. C. Manning (eds.), Stability of Protein Pharmaceuticals, Part A: Chemical and Physical Pathways of Protein Degradation (Pharm. Biotech. Ser., Vol. 2), Plenum Press, New York, 1992, pp. 1–29.

    Google Scholar 

  19. E. Sondheimer and R. W. Holley. Imides from asparagine and glutamine. J. Am. Chem. Soc. 76:2476–2470 (1954).

    Google Scholar 

  20. J. Bongers, E. P. Heimer, T. Lambros, Y. E. Pan, R. M Campbell, and A. M. Felix. Degradation of aspartic acid and asparagine residues in human growth hormone-releasing factor. Int. J. Peptide Protein Res. 39:364–374 (1992).

    Google Scholar 

  21. S. Capasso, L. Mazzarella, F. Sica, A. Zagari, and S. Salvadori. Kinetics and mechanism of succinimide ring formation in the deamidation process of asparagine residues. J. Chem. Soc. Perkin. Trans. 2:679–682 (1993).

    Google Scholar 

  22. R. C. Stephenson and S. Clarke. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J. Biol. Chem. 264(11):6164–6170 (1989).

    Google Scholar 

  23. Y. Shalitin and S. A. Bernhard. Cooperative effects of functional groups in peptides. II. Elimination reaction in aspartyl-(O-acyl)-serine derivatives. J. Am. Chem. Soc. 88:4711–4721 (1966).

    Google Scholar 

  24. N. P. Neumann. Methods in Enzymology, v.25b., Academ. Press, New York, p. 393, 1972.

    Google Scholar 

  25. N. P. Neumann. Methods in Enzymology, v.11., Academ. Press, New York, p. 485, 1967.

    Google Scholar 

  26. G. Toennies and T. P. Callan. Methionine studies III. A comparison of oxidative reactions of methionine, cysteine, and cystine. Determination of methionine by hydrogen peroxide oxidation. J. Biol. Chem. 129:481–490 (1939).

    Google Scholar 

  27. R. N. Chilamkurti. Formulation development of frozen parenteral dosage forms. J. Parenter. Sci. Technol. 46(4):124–129 (1992).

    Google Scholar 

  28. S. S. Larsen. Studies on stability of drugs in frozen solutions. Arch. Pharm. Chem. Sci. 1:541–568 (1973).

    Google Scholar 

  29. S. Schwimmer. Source Book of Food Enzymology, Avi Publishing, Westport, CN, 1981.

    Google Scholar 

  30. O. Fennema. Activity of enzymes in partially frozen aqueous systems. In R. B. Duckworth (ed.), Water Relations of Foods, Academic Press, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senderoff, R.I., Wootton, S.C., Boctor, A.M. et al. Aqueous Stability of Human Epidermal Growth Factor 1-48. Pharm Res 11, 1712–1720 (1994). https://doi.org/10.1023/A:1018903014204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018903014204

Navigation