Skip to main content
Log in

Body Distribution of Camptothecin Solid Lipid Nanoparticles After Oral Administration

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of this study was to investigate the specific changes in body distribution of camptothecin (CA) through incorporation into solid lipid nanoparticles (SLN) by peroral route.

Methods. Camptothecin loaded solid lipid nanoparticles (CA-SLN) coated with poloxamer 188 were produced by high pressure homogenization. The CA-SLN were characterized by transmission electron microscopy and electrophoretic mobility measurement. In vitro release characteristics of camptothecin from CA-SLN were studied at different pH media. The concentration of camptothecin in organs was determined using reversed-phase high-performance liquid chromatography with a fluorescence detector after oral administration of CA-SLN and a camptothecin control solution (CA-SOL).

Results. Our results showed that CA-SLN had an average diameter 196.8 nm with Zeta potential of −69.3 mV. The encapsulation efficiency of camptothecin was 99.6%, and in vitro drug release was achieved up to a week. There were two peaks in the camptothecin concentration-time curves in plasma and tested organs after oral administration of CA-SLN. The first peak was the result of free drug and the second peak was indicative of gut uptake of CA-SLN after 3 hours. In tested organs, the area under curve (AUC) and mean residence time (MRT) of CA-SLN increased significantly as compared with CA-SOL, and the increase of brain AUC was the highest among all tested organs.

Conclusions. The results indicate SLN could be a promising sustained release and targeting system for camptothecin or other lipophilic antitumor drugs after oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. H. Müller, W. Mehnert, J. S. Lucks, C. Schwarz, A. zur Mühlen, H. Weyhers, C. Freitas, and D. Rühl. Solid lipid nanoparticles (SLN)-An alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm. 41:62-69 (1995).

    Google Scholar 

  2. C. Schwarz, W. Mehnert, J. S. Lucks, and R. H. Müller. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Contr. Rel. 30:83-96 (1994).

    Google Scholar 

  3. B. Siekmann, and K. Westesen. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur. J. Pharm. Biopharm. 43:104-109 (1996).

    Google Scholar 

  4. R. Cavalli, E. Marengo, L. Rodriguez, and M. R. Gasco. Effects of some experimental factors on the production process of solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 43:110-115 (1996).

    Google Scholar 

  5. R. H. Müller, D. Rühl, S. Runge, K. Schulze-Forster, and W. Mehnert. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res. 14:458-462 (1997).

    PubMed  Google Scholar 

  6. J. Humberstone, and W. N. Charman. Lipid-based vehicles for the oral delivery of poorly water soluble drugs, Adv. Drug Deliv. Rev. 25:103-128 (1997).

    Google Scholar 

  7. E. C. Lavelle, S. Sharf, N. W. Thomas, J. Holland, and S. S. Davis. The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv. Drug Deliv. Rev. 18:5-22 (1995).

    Google Scholar 

  8. C. Jaxel, K. W. Kohn, M. C. Wani, M. E. Wall, and Y. Pommier. Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: Evidence for a specific receptor site and for a relation to antitumor activity. Cancer Res. 49:1465-1469 (1989).

    PubMed  Google Scholar 

  9. M. Potmesil. Camptothecins: from bench research to hospital wards. Cancer Res. 54:1431-1439 (1994).

    PubMed  Google Scholar 

  10. J.-P. Lon and A. E. Ahmed. Determination of camptothecin in biological fluids using reversed-phase high-performance liquid chromatography with fluorescence detection. J. Chromatogr. Biomed. Appl. 530:367-376 (1990).

    Google Scholar 

  11. J. H. Beijnen. High-performance liquid chromatographic analysis of the antitumour drug camptothecin and its lactone ring-opened form in rat plasma. J. Chromatogr. Biomed. Appl. 617:111-117 (1993).

    Google Scholar 

  12. J. Fassberg and V. J. Stella. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 81:676-684 (1992).

    PubMed  Google Scholar 

  13. T. G. Burke and Z. Mi. The structural basis of camptothecin interactions with human serum albumin impact on drug stability. J. Med. Chem. 37: 40-46 (1994).

    PubMed  Google Scholar 

  14. R. H. Müller, D. Rühl, and S. A. Runge. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. Int. J. Pharm. 144:115-121 (1996).

    Google Scholar 

  15. R. Löbenberg, L. Araujo, and J. Kreuter. Body distribution of azidothymidine bound to nanoparticles after oral administration. Eur. J. Pharm. Biopharm. 44:127-132 (1997).

    Google Scholar 

  16. C. M. Adeyeye and F. F. Chen. Stereoselective disposition of suspensions of conventional and wax-matrix sustained release ibuprofen microspheres in rats. Pharm. Res. 14:1811-1816 (1997).

    PubMed  Google Scholar 

  17. P. P. Constantinides, G. Welzel, H. Ellens, P. L. Smith, S. Sturgis, S. H. Yiv, and A. B. Owen. Water-in-oil microemulsions containing medium-chain fatty acids/salts: formulation and intestinal absorption enhancement evaluation. Pharm. Res. 13:210-215 (1996).

    PubMed  Google Scholar 

  18. P. Speiser. Lipidnanopellets als Trägersystem für Arzneimittel zur peroralen Anwendung. European Patent Application EP 0 167 825 (15.01.86).

  19. M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13:1838-1845 (1996).

    PubMed  Google Scholar 

  20. J. H. Eldridge, C. J. Hammond, J. A. Meulbroek, J. K. Staas, R. M. Gilley, and T. R. Tice. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. J. Conr. Rel. 11:205-214 (1990).

    Google Scholar 

  21. N. Hussain, P. U. Jani, and A. T. Florence. Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm. Res. 14:613-618 (1997).

    PubMed  Google Scholar 

  22. L. H. McMinn, G. M. Hodges, and K. E. Carr. Gastrointestinal uptake and translocation of microparticles in the streptozotocin-diabetic rat. J. Anat. 189:553-559 (1996).

    PubMed  Google Scholar 

  23. M. Le Ray, M. Vert, J. C. Gautier, and J. P. Benoit. Fate of [14C]poly (DL-lactide-co-glycolide) nanoparticles after intravenous and oral administration to mice. Int. J. Pharm. 106:201-211 (1994).

    Google Scholar 

  24. P. Jani, W. Halbert, J. Langridge, and A. T. Florence. The uptake and translocation of latex nanoparticles and microparticles after oral administration to rats. J. Pharm. Pharmcol. 41:809-812 (1989).

    Google Scholar 

  25. T. Minagava, K. Sakanaka, S. I. Inaba, Y. Sai. I. Tamai, T. Suwa, and A. Tsuji. Blood-brain-barrier transport of lipid microspheres containing clinprost, a prostaglandin I2 analogue. J. Pharm. Pharmacol. 48:1016-1022 (1996).

    PubMed  Google Scholar 

  26. J. Kreuter, R. N. Alyautdin, D. A. Kharkevich, and A. A. Ivanov. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674:171-174 (1995).

    PubMed  Google Scholar 

  27. Z. Mi and T. G. Burke. Differential interactions of camptothecin lactone and carboxylated forms with human blood components. Biochemistry 33:10325-10336 (1994).

    PubMed  Google Scholar 

  28. J. Kreuter. Drug targeting with nanoparticles. Eur. J. Drug Metab. Pharmacokinet. 19:253-256 (1994).

    PubMed  Google Scholar 

  29. P. H. Beck, J. Kreuter, W. E. G. Müller, and W. Schatton. Improved peroral delivery of avarol with polybutylcyanoacrylate nanoparticles. Eur. J. Pharm. Biopharm. 40:134-137 (1994).

    Google Scholar 

  30. Y. I. Kim, L. Fluckiger, M. Hoffman, I. Lartaud-Idjouadiene, J. Atkinson, and P. Maincent. The antihypertensive effect of orally administered nifedipine-loaded nanoparticles in spontaneously hypertensive rats. Br. J. Pharmacol. 120:399-404 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Zhu, J., Lu, Y. et al. Body Distribution of Camptothecin Solid Lipid Nanoparticles After Oral Administration. Pharm Res 16, 751–757 (1999). https://doi.org/10.1023/A:1018888927852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018888927852

Navigation