Skip to main content
Log in

In Vitro Evaluation of Microparticles and Polymer Gels for Use as Nasal Platforms for Protein Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Nasal delivery of protein therapeutics can be compromised by the brief residence time at this mucosal surface. Some bioadhesive polymers have been suggested to extend residence time and improve protein uptake across the nasal mucosa. We examined several potential polymer platforms for their in vitro protein release, relative bioadhesive properties and induction of cytokine release from respiratory epithelium.

Methods. Starch, alginate, chitosan or Carbopol® microparticles, containing the test protein bovine serum albumin (BSA), were prepared by spray-drying and characterized by laser diffraction and scanning electron microscopy. An open-membrane system was used to determine protein release profiles and confluent, polarized Calu-3 cell sheets were used to evaluate relative bioadhesion, enhancement of protein transport and induction of cytokine release in vitro.

Results. All spray-dried microparticles averaged 2−4 μm in diameter. Loaded BSA was not covalently aggregated or degraded. Starch and alginate microparticles released protein more rapidly but were less adhesive to polarized Calu-3 cells than chitosan and Carbopol® microparticles. Protein transport across polarized Calu-3 cells was enhanced from Carbopol® gels and chitosan microparticles. A mixture of chitosan microparticles with lysophosphatidylcholine increased protein transport further. Microparticles prepared from either chitosan or starch microparticles, applied apically, induced the basolateral release of IL-6 and IL-8 from polarized Calu-3 cells. Release of other cytokines, such as IL-lβ, TNF-α, GM-CSF and TGF-β, were not affected by an apical exposure to polymer formulations.

Conclusions. We have described two systems for the in vitro assessment of potential nasal platforms for protein delivery. Based upon these assessments, Carbopol® gels and chitosan microparticles provided the most desirable characteristics for protein therapeutic and protein antigen delivery, respectively, of the formulations examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Illum and A. N. Fisher. Intranasal delivery of peptides and proteins. In: A. L. Adjei and P. K. Gupta (eds.), Inhalation delivery of therapeutic peptides and proteins, pp. 135-184, New York: Marcel Dekker, 1997.

    Google Scholar 

  2. A. J. Almeida and H. O. Alpar. Nasal delivery of vaccines. J. Drug Target. 3:455-467 (1996).

    Google Scholar 

  3. M. D. Donovan, G. L. Flynn, and G. L. Amidon. Absorption of polyethylene glycols 600 through 2000: The molecular weight dependence of gastrointestinal and nasal absorption. Pharm. Res. 7:863-868 (1990).

    Google Scholar 

  4. M. A. Sarkar. Drug metabolism in the nasal mucosa. Pharm. Res. 9:1-9 (1992).

    Google Scholar 

  5. N. G. M. Schipper, J. C. Verhoef, and F. W. H. M. Merkus. The nasal mucociliary clearance: Relevance to nasal drug delivery. Pharm. Res. 8:807-814 (1991).

    Google Scholar 

  6. L. Illum, H. Jorgensen, H. Bisgaard, O. Krogsgaard, and N. Rossing. Bioadhesive microspheres as a potential nasal drug delivery system. Int. J. Pharm. 39:189-199 (1987).

    Google Scholar 

  7. H. L. Lueben, J. C. Verhoef, G. Borchard, C.-M. Lehr, A. B. G. de Boer, and H. E. Junginger. Mucoadhesive polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm. Res. 12:1293-1298 (1995).

    Google Scholar 

  8. L. Ryden and P. Edman. Effect of polymers and microspheres on the nasal absorption of insulin in rats. Int. J. Pharm. 83:1-10 (1992).

    Google Scholar 

  9. C.-M. Lehr. From sticky stuff to sweet receptors-achievements, limits and novel approaches to bioadhesion. Eur. J. Drug Metabol. Pharmacokin. 21:139-148 (1996).

    Google Scholar 

  10. T. L. Bonfield, E. Colton, R. E. Marchant, and J. M. Anderson. Cytokine and growth factor production by monocytes/macrophages on protein preabsorbed polymers. J. Biomed. Mater. Res. 26:837-850 (1992).

    Google Scholar 

  11. L. D. Martin, L. G. Rochelle, B. M. Fischer, T. M. Krunkosky, and K. B. Adler. Airway epithelium as an effector of inflammation: molecular regulation of secondary mediators. Eur. Respir. J. 10:2139-2146 (1997).

    Google Scholar 

  12. Y. Shibata, L. A. Foster, W. J. Metzger, and Q. N. Myrvik. Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice. Infect. Immun. 65:1734-1741 (1997).

    Google Scholar 

  13. T. Mori, M. Okumura, M. Matsuura, K. Ueno, S. Tokura, Y. Okamoto, S. Minami, and T. Fujinaga. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials 18:947-951 (1997).

    Google Scholar 

  14. Y.-F. Maa, H. R. Costantino, P.-A. Nguyen, and H. C. C. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm. Develop. Technol. 2:213-223 (1997).

    Google Scholar 

  15. A.-L. Cornaz, A. De Ascentis, P. Colombo, and P. Buri. In vitro characteristics of nicotine microspheres for transnasal delivery. Int. J. Pharm. 129:175-183 (1996).

    Google Scholar 

  16. B.-Q. Shen, J. H. Widdicombe, and R. J. Mrsny. Effects of lovastatin on trafficking of CFTR in human tracheal epithelium. J. Biol. Chem. 270:25102-25106. (1995).

    Google Scholar 

  17. B.-Q. Shen, W. E. Finkbeiner, J. J. Wine, R. J. Mrsny, and J. H. Widdicombe. Calu-3: a human airway epithelium cell line that shows cAMP-dependent Clsecretion. Am. J. Physiol. 266:L493-L501 (1994).

    Google Scholar 

  18. D. Cremaschi, C. Porta, and R. Ghiradelli. Endocytosis of polypeptides in rabbit nasal respiratory mucosa. News Physiol. Sci. 12:219-225 (1997).

    Google Scholar 

  19. R. C. Boucher and E. H. C. Cheng. Human nasal epithelial cultures. In: G. Wilson, S. S. Davis, L. Illum, and A. Zweibaum (eds.), Pharmaceutical applications of cell and tissue culture to drug transport, Vol. 218, pp. 249-258. New York: Plenum Press, 1991.

    Google Scholar 

  20. A. R. Tweedie. The reaction of the nasal mucus. Acta Oto-laryngologica 151-153 (1936).

  21. R. T. Jackson and J. S. Turner Jr. Some observations on nasal pH. Arch. Otolaryng. 84:446-450 (1966).

    Google Scholar 

  22. P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11:1358-1361 (1994).

    Google Scholar 

  23. L. Illum, N. F. Farraj, H. Critchley, B. R. Johansen, and S. S. Davis. Enhanced nasal absorption of insulin in rats using lysopho-sphotidylcholine. Int. J. Pharm. 57:49-54 (1989).

    Google Scholar 

  24. E. Marttin, J. C. Verhoef, and F. W. H. M. Merkus. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J. Drug Target. 6:17-36 (1998).

    Google Scholar 

  25. J. A. Hunt, B. F. Flanagan, P. J. McLaughlin, I. Strickland, and D. F. Williams. Effect of biomaterial surface charge on the inflammatory response: evaluation of cellular infiltration and TNF alpha production. J. Biomed. Mater. Res. 31:139-144 (1996).

    Google Scholar 

  26. K. E. Driscoll, J. M. Carter, D. G. Hassenbein, and B. Howard. Cytokines and particle-induced inflammatory cell recruitment. Environ. Health Perspectives 105:1159-1164 (1997).

    Google Scholar 

  27. T. Hirano. Interleukin 6 and its receptor: ten years later. Inter. Rev. Immunol. 16:249-284 (1998).

    Google Scholar 

  28. S. B. Joseph, K. T. Miner, and M. Croft. Augmentation of naive, Th1 and Th2 effector CD4 responses by IL-6, IL-1 and TNF. Eur. J. Immunol. 28:277-289 (1998).

    Google Scholar 

  29. P. T. Odinot, J. H. A. J. Curfs, J. F. G. M. Meis, W. J. G. Melchers, and J. A. A. Hoogkamp-Korstanje. Local expression of cytokine mRNA in spleen and Peyer's patches of rats is involved in resistance against infection with Yersinia enterocolitica. Cytokine 10:206-212 (1998).

    Google Scholar 

  30. S. E. Sanders, J. L. Madara, D. K. McGuirk, D. S. Gelman, and S. P. Colgan. Assessment of inflammatory events in epithelial permeability: a rapid screening method using fluorescein dextrans. Epithelial Cell Biology 4:25-34 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witschi, C., Mrsny, R.J. In Vitro Evaluation of Microparticles and Polymer Gels for Use as Nasal Platforms for Protein Delivery. Pharm Res 16, 382–390 (1999). https://doi.org/10.1023/A:1018869601502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018869601502

Navigation