Skip to main content
Log in

Angiogenesis as a Target for Breast Cancer Therapy

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Angiogenesis, the development of new bloodvessels, is crucial for the growth of both primarytumors and metastases beyond a minimal size and thevasculature of tumors facilitates their metastaticspread. Inhibition of angiogenesis is thus seen as apotentially useful approach to anti-metastasis therapy,and is an area of active research and development. Herewe discuss this therapeutic approach in the context of breast cancer. An overview of thecontribution of angiogenesis to tumor development isprovided and current treatment options for breast cancerare briefly summarized. Assessment of angiogenesis inprimary breast tumors has been shown to provideindependent prognostic information. There areopportunities for the application of anti-angiogenesistherapeutic strategies in the treatment of breastcancer. Clinical trial design must take into account the uniqueproperties of anti-angiogenic agents to fully assesstheir potential clinical benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Pluda (1997). Tumor-associated angiogenesis: Mechanisms, clinical implications, and therapeutic strategies. Semin. Oncol. 24:203–218.

    PubMed  Google Scholar 

  2. S. Brem (1998). Angiogenesis antagonists: Current clinical trials. Angiogenesis 2:9–20.

    PubMed  Google Scholar 

  3. J. Folkman (1989). What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82:4–6.

    Google Scholar 

  4. B. R. Zetter (1998). Angiogenesis and tumor metastasis. Ann. Rev. Med. 49:407–424.

    PubMed  Google Scholar 

  5. J. Folkman (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1:27–30.

    PubMed  Google Scholar 

  6. J. Folkman (1995). Clinical applications of research on angiogenesis. N. Engl. J. Med. 333:1757–1763.

    Article  PubMed  Google Scholar 

  7. I. J. Fidler and L. M. Ellis (1994). The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188.

    Article  PubMed  Google Scholar 

  8. J. Folkman and P. A. D'Amore (1996). Blood vessel formation: What is its molecular basis? Cell 87:1153–1155.

    PubMed  Google Scholar 

  9. E. C. Kohn (1998). Endostatin and angiostatin: The next antiangiogenesis generation. Angiogenesis 2:25–27.

    PubMed  Google Scholar 

  10. B. P. Eliceiri and D. A. Cheresh (1999). The role of αv integrins during angiogenesis: Insights into potential mechanisms of action and clinical development. J. Clin. Invest. 103:1227–1230.

    PubMed  Google Scholar 

  11. W. G. Stetler-Stevenson (1999). Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J. Clin. Invest. 103:1237–1241.

    PubMed  Google Scholar 

  12. Y. Veikkola and K. Alitalo (1999). VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 9:211–220.

    PubMed  Google Scholar 

  13. J. Bischoff (1995). Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 5:69–74.

    PubMed  Google Scholar 

  14. C. H. Blood and B. R. Zetter (1990). Tumor interactions with the vasculature: Angiogenesis and tumor metastasis. Biochim. Biophys. Acta. 1032:89–118.

    PubMed  Google Scholar 

  15. B. Hobson and J. Denekamp (1984). Endothelial proliferation in tumors and normal tissues: Continuous labeling studies. Brit. J. Cancer 49:405–413.

    PubMed  Google Scholar 

  16. R. Cotran, V. Kumar, and T. Collins (eds.), (1990). Robbins Pathologic Basis of Disease, Sixth Edition, Saunders, Philadelphia, Pennsylvania, pp. 260–327. (Neoplasia).

    Google Scholar 

  17. L. R. Bernstein and L. A. Liotta (1994). Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr. Opin. Oncol. 6:106–113.

    PubMed  Google Scholar 

  18. R. Steiner (1992). Angiogenesis—Historical perspective. In R. Steiner, P. B. Weisz, and R. Langer (eds.), Angiogenesis: Key Principles— Science—Technology-Medicine, Birhauser Verlag, Basel Switzerland, pp. 1–3.

    Google Scholar 

  19. E. Goldmann (1907). Growth of malignant disease in man and lower animals with special reference to vascular system. Proc. Royal Soc. Med. 1:1–14.

    Google Scholar 

  20. E. R. Clark, H. T. Kirby-Smith, R. C. Rex, and R. G. Williams (1930). Recent modifications in the method of studying live cells and tissues in transparent chambers inserted in the rabbit's ear. Anat. Record. 47:187.

    Google Scholar 

  21. A. G. Ide, N. H. Baker, and S. L. Warren (1939). Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42:891–899.

    Google Scholar 

  22. G. H. Algire (1943). Microscopic studies of the early growth of a transplantable melanoma of the mouse using the transparent chamber technique. J. Natl. Cancer Inst. 4:1–12.

    Google Scholar 

  23. G. H. Algire and F. Y. Legallais (1947). Growth rate of transplantable tumor in relation to latent period and host vascular reaction. Cancer Res. 7:724.

    Google Scholar 

  24. J. Folkman (1995). Tumor angiogenesis. In J. Mendelsohn, P. M. Howley, M. A. Israel, L. A. Liotta (eds.), The Molecular Basis of Cancer, Saunders, Philadelphia, Pennsylvania, pp 206–232.

    Google Scholar 

  25. J. Folkman (1971). Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 285:1182–1186.

    PubMed  Google Scholar 

  26. J. Folkman (1996). Fighting cancer by attacking its blood supply. Sci. Am. 275:150–154.

    PubMed  Google Scholar 

  27. J. Folkman, K. Watson, D. Ingber, and D. Hanahan (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61.

    PubMed  Google Scholar 

  28. M. A. Gimbrone, S. B. Leapman, R. S. Cotran, and J. Folkman (1972). Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136:261–276.

    PubMed  Google Scholar 

  29. J. Folkman (1995). Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl. J. Med. 333:1757–1763.

    Article  PubMed  Google Scholar 

  30. N. Weidner, J. Folkman, F. Pozza, P. Bevilacqua, E. N. Allred, D. H. Moore, S. Meli, and G. Gasparini (1992). Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 84:1875–1887.

    PubMed  Google Scholar 

  31. P. J. Polverini and S. J. Leibovich. (1984). Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab. Invest. 51:635–642.

    PubMed  Google Scholar 

  32. J. Folkman (1976) Tumor angiogenesis factor. Cancer Res. 34:2109–2113.

    Google Scholar 

  33. L. Holmgren, M. S. O'Reilly, and J. Folkman (1995). Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression Nature Med. 1:149–153.

    PubMed  Google Scholar 

  34. J. Folkman (1985). Tumor angiogenesis. Adv. Cancer Res. 43:175–203.

    PubMed  Google Scholar 

  35. M. S. Pepper, S. J. Mandriota, J-D Vassalli, L. Orci, and R. Montesano (1996). Angiogenesis — Regulating cytokines: Activities and interactions. In U. Günther, P. M. Schlag, and W. Birchmeir (eds.) Attempts to Understand Metastasis Formation II, Springer-Verlag, Berlin, pp. 31–55.

    Google Scholar 

  36. H. F. Dvorak, L. F. Brown, M. Detmar, and A. M. Dvorak (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146:1029–1039.

    PubMed  Google Scholar 

  37. J. Folkman and Y. Shing (1992). Angiogenesis. J. Biol. Chem. 267:10931–10934.

    PubMed  Google Scholar 

  38. L. A. Liotta, P. S. Steeg, and W. G. Stetler-Stevenson (1991). Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 64:327–336.

    Article  PubMed  Google Scholar 

  39. H. Malonne, I. Langer, R. Kiss, and G. Atassi (1999). Mechanisms of tumor angiogenesis and therapeutic implications: Angiogenesis inhibitors. Clin. Exp. Metastasis 17:1–14.

    PubMed  Google Scholar 

  40. J. Folkman and M. Klagsburn (1987). Angiogenic factor. Science 235:442–447.

    PubMed  Google Scholar 

  41. S. Wylie, I. C. MacDonald, H. J. Varghese, E. E. Schmidt, V. L. Morris, A. C. Groom, and A. F. Chambers (1999). The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin. Exp. Metastasis 17:111–117.

    PubMed  Google Scholar 

  42. K. J. Luzzi, H. J. Varghese, I. C. MacDonald, E. E. Schmidt, E. C. Kohn, V. L. Morris, K. E. Marshall, A. F. Chambers, and A. C. Groom (1999). Inhibition of angiogenesis in liver metastases by carboxyamidotriazole (CAI). Angiogenesis 2:373–379.

    Google Scholar 

  43. A. F. Chambers, I. C. MacDonald, E. E. Schmidt, V. L. Morris and A. C. Groom (1999). Preclinical assessment of anti-cancer therapeutic strategies using in vivo videomicroscopy. Cancer Metastasis Rev. 17:263–269.

    Google Scholar 

  44. M. F. Goldsmith (1999). Leading sites of new cancer cases and deaths—1999 estimates. JAMA 281:405.

    PubMed  Google Scholar 

  45. C. L. Vogel and J. M. Nabholtz (1999). Monotherapy of metastatic breast cancer: A review of newer agents. The Oncologist 4:17–33.

    PubMed  Google Scholar 

  46. M. J. Ellis (1998). Selective aromatase inhibitors: Current indication and future perspectives. In J. R. Harris and M. E. Lippman (eds.), Diseases of the Breast Updates. Lippincott-Raven, Philadelphia, pp. 1–11.

    Google Scholar 

  47. M. M. Goldenberg (1999). Trastuzumab a recombinant DNA-derived humanized monoclonal antibody. A novel agent for the treatment of metastatic breast cancer. Clin. Therapy 21:309–318.

    Google Scholar 

  48. J. J. Body, R. Bartl, P. Burkhardt, P. D. Delmas, I. J. Diel, H. Fleisch, J. A. Kanis, R. A. Kyle, G. R. Mundy, A. H. G. Paterson, and R. D. Rubens for the International Bone and Cancer Study Group (1998). Current use of bisphosphonates in oncology. J. Clin. Oncol. 16:3890–3899.

    PubMed  Google Scholar 

  49. S. F. Honig (1996). Treatment of metastatic disease. In J. R. Harris, M. E. Lippman, M. Morrow, and S. Hellman (eds.), Diseases of the Breast. Lippincott-Raven, Philadelphia, pp. 669–734.

    Google Scholar 

  50. M. J. Piccart, A. Awada, and A. Hamilton (1999). Integration of new therapies into management of metastatic breast cancer: A focus on chemotherapy, treatment selection through use of molecular markers and newly developed biologic therapies in late clinical development. Am. Soc. Clin. Oncol. Ed., 35th Ann. Meeting, pp. 526–539.

  51. Early Breast Cancer Trialists' Collaborative Group (1998). Polychemotherapy for early breast cancer: An overview of the randomized trials. Lancet 352:930–942.

    Google Scholar 

  52. Early Breast Cancer Trialists' Collaborative Group (1998). Tamoxifen for early breast cancer: An overview of the randomized trials. Lancet 351:1451–1467.

    Google Scholar 

  53. Program/Proceedings American Society Clinical Oncology (1999). Abstracts 1–4, pp. 1a-2a.

  54. Editorial. (1999). Chaos surrounds high-dose chemotherapy for breast cancer. Lancet 353:1633.

  55. N. Weidner, J. P. Semple, W. R. Welch, and J. Folkman (1991). Tumor angiogenesis and metastasis—correlation in invasive breast cancer. N. Engl. J. Med. 324:1–8.

    PubMed  Google Scholar 

  56. G. Gasparini and A. L. Harris (1995). Clinical importance of the determination of tumor angiogenesis in breast carcinoma: Much more than a new prognostic tool. J. Clin. Oncol. 13:765–782.

    PubMed  Google Scholar 

  57. N. Locopo, M. Fanelli, and G. Gasparini (1998). Clinical significance of angiogenic factors in breast cancer. Breast Cancer Res. Treat. 52: 159–173.

    PubMed  Google Scholar 

  58. L. Martin, B. Green, C. Renshaw, D. Lowe, P. Rudland, S. J. Leinster, and J. Winstanley (1997). Examining the technique of angiogenesis assessment in invasive breast cancer. Brit. J. Cancer 76:1046–1057.

    PubMed  Google Scholar 

  59. I. Hamaguchi, X. L. Huang, N. Takakura, J. Tada, Y. Yamaguchi, H. Kodema, and T. Suda (1999). In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-me sonephros region. Blood 93:1549–1556.

    PubMed  Google Scholar 

  60. R. Heimann, D. Ferguson, S. Gray, and S. Hellman (1998). Assessment of intratumoral vascularization (angiogenesis) in breast cancer prognosis. Breast Cancer Res. Treat. 52:147–158.

    PubMed  Google Scholar 

  61. R. S. Kerbel (1999). Some recent advances in preclinical aspects of treating cancer by inhibition of tumor angiogenesis. Am. Soc. Clin. Oncol. Ed. pp. 4–7.

  62. D. Belotti, V. Vergani, T. Drudis, P. Borsotti, M. R. Pitelli, G. Viale, R. Giavizzi, and G. Tarabdetti. (1996). The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin. Cancer Res. 2:1843–1849.

    PubMed  Google Scholar 

  63. Angiogenesis inhibitors in clinical trials. http://cancertrials/nci.nih.gov/

  64. G. Gasparini, S. B. Fox, P. Verderio, E. Bondoldi, P. Berilacqua, P. Boracchi, S. Dante, E. Marubini, and A. L. Harris. (1996). Determination of angiogenesis adds information to estrogen receptor status in predicting the efficacy of adjuvant tamoxifen in node-positive breast cancer patients. Clin. Cancer Res. 2:1191–1198.

    PubMed  Google Scholar 

  65. A. Makris, T. J. Powles, S. Kakolyris, M. Dowsett, S. E. Ashley, and A. L. Harris. (1999). Reduction in angiogenesis after neoadjuvant chemoendocrine therapy in patients with operable breast carcinoma. Cancer 85:1996–2000.

    PubMed  Google Scholar 

  66. S. G. Eckhardt and J. M. Pluda. (1997). Development of angiogenesis inhibitors for cancer therapy. Invest. New Drugs 15:1–3.

    PubMed  Google Scholar 

  67. J. N. Ingle, V. J. Suman, C. G. Kardinal, J. E. Krook, J. A. Maillard, M. H. Veeder, C. L. Loprinzi, R. J. Dalton, L. C. Hartmann, C. A. Conaver, and M. N. Pollak (1999). A randomized trial of tamoxifen alone or combined with octreotide in the treatment of women with metastatic breast carcinoma. Cancer 85:1284–1292.

    PubMed  Google Scholar 

  68. T. Boehm, J. Folkman, T. Browder, and M. S. O'Reilly (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407.

    Article  PubMed  Google Scholar 

  69. R. S. Kerbel (1997). A cancer therapy resistant to resistance (News and Views). Nature 390:335–336.

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayson, D., Vantyghem, S.A. & Chambers, A.F. Angiogenesis as a Target for Breast Cancer Therapy. J Mammary Gland Biol Neoplasia 4, 415–423 (1999). https://doi.org/10.1023/A:1018774618873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018774618873

Navigation