Skip to main content
Log in

Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Isolated fibres from various muscles were skinned mechanically in oil. From a Ca2+-loaded micropipette, local applications of Ca2+ were made. These produced a limited contraction which relaxed spontaneously. The time-course of sarcomere shortening and re-lengthening was recorded by microcinephotography. Application of Ruthenium Red, a potent and specific inhibitor of Ca2+ uptake by mitochondria, did not affect the contraction- relaxation cycles of typical glycolytic white fibres (frog sartorius, pigeon breast). By contrast, Ruthenium Red greatly slowed down the relaxation rate in mitochondria-rich fibres (rat soleus and rabbit masseter). In these fibres, Ca2+ uptake by mitochondria seems to play an active role in promoting relaxation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASHLEY, C. C., CALDWELL, P. C., LOWE, A. G., RICHARDS, C. D. & SCHIRMER, M. (1965) The amount of injected EGTA needed to suppress the contractile response of single Maia muscle fibres and its relation to the amount of calcium released during contraction. J. Physiol. 179, 32–33.

    Google Scholar 

  • ASHLEY, C. C., MOISESCU, D. G. & ROSE, R. M. (1974) Kinetics of calcium during contraction: myofibrillar and SR fluxes during a single response of a skeletal muscle fibre. In Calcium binding proteins (edited by DRABIKOWSKI, W., STRZELECKA-GOLASZEWSKA, M. & CARAFOLI, E.) pp. 609–42. Amsterdam: Elsevier.

    Google Scholar 

  • BAKKER, A. J., HEAD, S. I. & STEPHENSON, D. G. (1997) Time course of calcium transients derived from Fura-2 fluorescence measurements in single fast twitch fibres of adult mice and rat myotubes developing in primary culture. Cell Calcium 21, 359–64

    Google Scholar 

  • BAYLOR, S. M., CHANDLER, W. K. & MARSHALL, M. W. (1983) Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from arsenazo III calcium transients J. Physiol. 344, 625–66.

    Google Scholar 

  • BLINKS, J. R., RÜDEL, R. & TAYLOR, S. R. (1978) Calcium transients in isolated amphibian muscle fibres: detection with aequorin. J. Physiol. 277, 291–323.

    Google Scholar 

  • CARDOSO, C. M. & DE MEIS, L. (1993) Modulation by fatty acids of Ca2+ fluxes in sarcoplasmic reticulum vesicles. Biochem. J. 296, 49–52.

    Google Scholar 

  • CARAFOLI, E. (1987) Intracellular calcium homeostasis Ann. Rev. Biochem. 56, 395–433.

    Google Scholar 

  • CARROLL, S. L., KLEIN, M. G. & SCHNEIDER, M. F. (1995) Calcium transient in intact rat skeletal muscle fibers in agarose gel. Am. J. Physiol. 269, C28–34.

    Google Scholar 

  • CHACON, E., OHATA, H., HARPER, I. S., TROLLINGER, D. R., HERMAN, B. & LEMASTERS, J. J. (1996) Mitochondria free calcium transients during excitation-contraction coupling in rabbit cardiac myocytes. FEBS Lett. 382, 31–6.

    Google Scholar 

  • CLOSE, R. I. (1972) Dynamic properties in mammalian skeletal muscles. Physiol. Rev. 52, 129–97.

    Google Scholar 

  • CROMPTON, N., SIGEL, E., SALZMANN, M. & CARAFOLI, E. (1976) A kinetic study of the energy-linked influx of Ca2+ into heart mitochondria Eur. J. Biochem. 69, 429–34.

    Google Scholar 

  • DELBONO, O. & STEPHANI, E. (1993) Calcium transients in single mammalian skeletal muscle fibres. J. Physiol. 463, 689–707.

    Google Scholar 

  • FRYER, M. W. & NEERING, I.R. (1989) Actions of caffeine on fast and slow twitch muscles of the rat. J. Physiol. 416, 435–54.

    Google Scholar 

  • GEORGE, J. C. & BERGER, A. J. (1966) Avian Myology. New York: Academic Press.

    Google Scholar 

  • GILLIS, J. M. (1985) Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches Biophys. Biochim. Acta 811, 97–145.

    Google Scholar 

  • GILLIS, J. M., MAES, M. & VERELLEN-DUMOULIN, C. (1973) Controlled application of calcium to sarcolemma-free muscle fibres J. Physiol. 232, 1–3P.

    Google Scholar 

  • GUNTER, T. E. & PFEIFFER, D. R. (1990) Mechanisms by which mitochondria transport calcium Am. J. Physiol. 258, C755–86.

    Google Scholar 

  • HAJNÓCZKY, G., ROBB-GASPERS, L. D., SEITZ, M. B. & THOMAS, A. P. (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–24.

    Google Scholar 

  • LÄNNERGREN, J. (1971) The effect of low level activation on the mechanical properties of isolated frog muscle fibers. J. Gen. Physiol. 58, 145–62.

    Google Scholar 

  • MOENS, P., PARTRIDGE, T. A., MORGAN, J. E., BECKERSBLEUKS, G. & MARÉCHAL, G. (1992) Regeneration after free muscle grafting in normal and dystrophic (mdx) mice. J. Neurol. Sci. 111, 209–13.

    Google Scholar 

  • MOORE, C. L. (1971) Specific inhibition of mitochondrial Ca2+ transport by ruthenium red. Biochem. Biophys. Res. Com., 42, 298–305.

    Google Scholar 

  • PODOLSKY, R. J. (1964) The maximum sarcomere length for contraction of isolated myofibrils J. Physiol. 170, 110–23.

    Google Scholar 

  • RIZZUTO, R., SIMPSON, A. W. M., BRINI, M. & POZZAN, T. (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature, 358325–7.

    Google Scholar 

  • RUTTER, G. A., THELER, J. M., MURGIA, M., WOLLHEIM, C. B., POZZAN, T. & RIZZUTO, R. (1993) Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in pancreatic β-cell line. J. Biol. Chem. 268, 22385–90.

    Google Scholar 

  • SCIOTE, J. J. & KENTISH, J. C. (1996) Unloaded shortening velocities of rabbit masseter muscle fibres expressing skeletal or α-cardiac myosin heavy chains. J. Physiol. 492, 659–67.

    Google Scholar 

  • WESTERBLAD, H. & ALLEN, D. G. (1991) Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J. Gen. Physiol. 98, 615–35.

    Google Scholar 

  • WESTERBLAD, H. & ALLEN, D. G. (1995) Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle. J. Physiol. 480, 31–43.

    Google Scholar 

  • WOLEDGE, R. C., CURTIN, N. A. & HOMSHER, E. (1985) In Energetics Aspects of Muscle Contraction. Monographs of the Physiol. Soc, 41, pp. 97–8. London: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GILLIS, J.M. Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles. J Muscle Res Cell Motil 18, 473–483 (1997). https://doi.org/10.1023/A:1018603032590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018603032590

Keywords

Navigation