Skip to main content
Log in

Theory for the plastic deformation of glassy polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present a theory to account for how a stress field can induce plastic flow in glassy polymers. We consider a molecular model in which chains are constituted from isotropic oriented elementary links embedded in a deforming continuum. The shear-stress field causes a redistribution of such links governed by a balance equation in orientation space. After detail calculations of the number of oriented units in certain directions, the net jump rate of the molecular links is given by an exponential form, according to the transition state theories of Adam and Gibbs [6]. These considerations are compared with the study of Boyce et al. [5] that included the effects of deformation rate, pressure and strain softening. The calculation of the plastic properties for polymethyl methacrylate and polycarbonate for various types of deformation has been made, and the corresponding results fitted the experimental data reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. EYRING, J. Chem. Phys. 4 (1936) 283.

    Article  CAS  Google Scholar 

  2. R. E. ROBERTSON, ibid. 44 (1966) 3950.

    Article  Google Scholar 

  3. R. A. DUCKETT, S. RABINOWITZ and I. M. WARD, J. Mater. Sci. 5 (1970) 909.

    Article  CAS  Google Scholar 

  4. A. S. ARGON, Phil. Mag. 28 (1973) 39.

    Google Scholar 

  5. M. C. BOYCE, D. M. PARKS and A. S. ARGON, Mech. Mater. 7 (1988) 15.

    Article  Google Scholar 

  6. G. ADAMS and J. H. GIBBS, J. Chem. Phys. 43 (1965) 139.

    Article  Google Scholar 

  7. M. COHEN and D. TURNBULL, J. Chem. Phys. 31 (1959) 1164.

    Article  CAS  Google Scholar 

  8. F. BUECHE, “Physical properties of polymers” (Wiley, New York, 1962).

    Google Scholar 

  9. P. D. WU and E. Van Der GIESSEN, J. Mech. Phys. Solids 41 (1993) 456.

    Google Scholar 

  10. I. DAFALIAS, Lectures on continuum mechanics, National Tech. Univ. of Athens, Athens (1993).

    Google Scholar 

  11. J. CM. LI and J. J. GILMAN, J. App. Phys. 41 (1970) 4248.

    Article  CAS  Google Scholar 

  12. I. M. WARD, “Mechanical properties of solid polymers” (Wiley, New York, 1983) p. 283.

    Google Scholar 

  13. S. RABINOWITZ, I. M. WARD and J. C. S. PARRY, J. Mater. Sci. 5 (1970) 29.

    Article  CAS  Google Scholar 

  14. E. H. LEE, J. Appl. Mech. 36 (1969) 1.

    Google Scholar 

  15. L. ANAND, ibid. 46 (1979) 78.

    CAS  Google Scholar 

  16. R. N. HAWARD, “The physics of glassy polymers” (Applied Science, London, 1973).

    Google Scholar 

  17. R. N. HAWARD and G. THACKRAY, Proc. R. Soc. Lond. A 303 (1968) 453.

    Google Scholar 

  18. M. C. WANG and E. J. GUTH, J. Chem. Phys. 20 (1952) 1144.

    Article  Google Scholar 

  19. E. M. ARRUDA and M. C. BOYCE, in “Anisotropy and localization of deformation”, edited by J. P. Boehler and A. S. Khan (Elsevier Applied Science, London, 1991).

    Google Scholar 

  20. P. S. HOPE, I. M. WARD and A. G. GIBSON, J. Mater. Sci. 15 (1980) 2207.

    Article  CAS  Google Scholar 

  21. C. G’ SELL and A. J. GOPEZ, ibid. 20 (1985) 3462.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SPATHIS, G. Theory for the plastic deformation of glassy polymers. Journal of Materials Science 32, 1943–1950 (1997). https://doi.org/10.1023/A:1018533613296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018533613296

Keywords

Navigation