Skip to main content
Log in

Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM), tapping mode atomic force microscopy (TM-AFM) and transmission electron microscopy (TEM) have been used to image the cell wall, ultrathin sections of whole cells and cellulose microfibrils prepared from the green alga Micrasterias denticulata. Measurements of the microfibril dimensions are in agreement with earlier observations carried out by electron microscopy. Images at the molecular level of the surface of the microfibrils were obtained with AFM and show regular periodicities along the microfibril axis that correspond to the fibre and glucose repeat distances of cellulose. Twisted regions visible at intervals along the microfibrils dried down onto substrates were noted to be right-handed in over 100 observations by TEM, AFM and TM-AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V. and Hansma, P. K. (1989) An atomicresolution atomic force-microscope implemented using an optical lever. J. Appl. Phys. 65(1), 164–167.

    Article  CAS  Google Scholar 

  • Binnig, G., Quate, C. F. and Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933.

    Article  CAS  Google Scholar 

  • Blackwood, A. W. (1993) General preparation techniques for SEM. In Proceedures in electron microscopy (A. W. Robards and A. J. Wilson, eds). York, UK: John Wiley & Sons, Section 10:4, pp. 10–11.

    Google Scholar 

  • Brown, R. M. Jr, Haigler, C. H., White, A. R. and Cooper, K. M. (1983) Biosynthesis and Degradation of Cellulose. J. Appl. Polym. Sci., Appl. Polym. Symp. 37, 33–78.

    CAS  Google Scholar 

  • Engel, A. (1991) Biological applications of scanning probe microscopes. Annu. Rev. Biophys. Biophys. Chem. 20, 79–108.

    Article  CAS  Google Scholar 

  • Gardner, K. H. and Blackwell, J. (1974) The structure of native cellulose. Biopolymers 13, 1975–2001.

    Article  CAS  Google Scholar 

  • Giddings, T. H. Jr., Browler, D. L. and Staehelin, L. A. (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary walls. J. Cell Biology 84, 327–339.

    Article  Google Scholar 

  • Gray, D. G. (1996) Chirality in Cellulose and Cellulose-based Materials, Polymer Preprints (Div. Polymer Sci., American Chemical Society), 37(2), 485–486.

    CAS  Google Scholar 

  • Hanley, S. J., Giasson, J., Revol, J.-F. and Gray, D. G. (1992) Atomic force microscopy of cellulose microfibrils; comparison with transmission electron microscopy. Polymer 33(21), 4639–4642.

    Article  CAS  Google Scholar 

  • Horton, O. and Amrein, M. eds (1993) STM and SFM in biology. San Diego, CA: Academic Press.

    Google Scholar 

  • Kiermayer, O. and Sleyter, U. B. (1979) Hexagonally ordered `rosettes' of particles in the plasma membrane of Micrasterias denticulata breÂb. and their significance for microfibril formation and orientation. Protoplasma 101, 133–138.

    Article  Google Scholar 

  • Kim, N.-H., Herth, W., Vuong, R. and Chanzy, H. (1996) The cellulose system in the cell wall of Micrasterias. J. Structural Biol. 117, 185–203.

    Article  Google Scholar 

  • Kuutti, L., Peltonen, J., Pere, J. and Teleman, O. (1995) Identification and surface structure of crystalline cellulose studied by atomic force microscopy. J. Microsc. 178(1), 1–6.

    Article  CAS  Google Scholar 

  • Lal, R. and John, S. A. (1994) Biological applications of atomic force microscopy. Am. J. Physiol. 266 (Cell Physiol. 35), C1–C21.

    Article  CAS  Google Scholar 

  • Martin, Y., Williams, C. C. and Wickramasinghe, H. K. (1987) Atomic force microscope-force mapping and profiling on a sub 100 angstrom scale. J. Appl. Phys. 61(10), 4723–4729.

    Article  CAS  Google Scholar 

  • McClelland, G. M., Erlandsson, R. and Chiang, S. (1987) Atomic force microscopy: general principles and a new implementation in Review of progress in quantitative non-destructive evaluation. (D. O. Thompson and D. E. Chimenti, eds.) New York: Plenum Press. 1307.

    Google Scholar 

  • McGuire, G. E., Swanson, M. L., Parikh, N. R., Simko, S., Weiss, P. S., Ferris, J. H., Nemanich, R. J., Chopra, D. R. and Chourasia, A. R. (1995) Surface characterisation. Anal. Chem. 67(12), 199R–220R.

    Article  CAS  Google Scholar 

  • Meyer, G. and Amer, N. M. (1988) Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53(12), 1045–1047.

    Article  Google Scholar 

  • Ohnesorge, F. and Binnig, G. (1993) True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260, 1451–1456.

    Article  CAS  Google Scholar 

  • Putman, C. A. J., Van de Werf, K. O., De Grooth, B. G., Van Hulst, N. F. and Greeve, J. (1994) Tapping Mode Atomic Force Microscopy in Liquid. Appl. Phys. Lett. 64(18), 2454–2456.

    Article  CAS  Google Scholar 

  • Radmacher, M., Tillmann, R. W., Fritz, M. and Gaub, H. E. (1992) From molecules to cells-imaging soft samples with the AFM. Science 257, 1900–1905.

    Article  CAS  Google Scholar 

  • Revol, J.-F. (1990) Electron crystallography of radiation sensitive polymer crystals. In Electron Crystallography of Organic Molecules (J. R. Fryer and D. L. Dorset, eds). Dordrecht, Netherlands: Kluwer Academic Publishers. pp. 169–187.

    Google Scholar 

  • Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. and Gray, D. G. (1992) Helicoidal selfordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170–172.

    Article  CAS  Google Scholar 

  • Revol, J.-F., Godbout, L., Dong, X.-M., Gray, D. G., Chanzy, H. and Maret, G. (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liquid Crystals 16, 127–134.

    Article  CAS  Google Scholar 

  • Revol, J.-F. and Marchessault, R. H. (1993) In vitro chiral nematic ordering of chitin crystallites. Int. J. Biol. Macromol. 15, 329–335.

    Article  CAS  Google Scholar 

  • Ruben, G. C., Bokelman, G. H. and Krakow, W. (1989) Triple-stranded Left-hand Helical Cellulose Microfibril in Acetobacter xylinum and in Tobacco Primary Cell Wall. In Plant Cell Wall Polymers (N. G. Lewis and M. G. Paice, eds) Washington: ACS Symposium Series 399. pp. 278–298.

    Chapter  Google Scholar 

  • Waris, H. (1953) The significance for algae of chelating substances in the nutrient solutions. Physiologia Plantarum 6, 538–543.

    Article  CAS  Google Scholar 

  • Zhong, Q., Inniss, D., Kjoller, K. and Elings, V. B. (1993) Fractured polymer/silica fiber surface studied by Tapping Mode atomic force microscopy. Surf. Sci. 290(1-2), L668–L692.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HANLEY, S.J., REVOL, JF., GODBOUT, L. et al. Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4, 209–220 (1997). https://doi.org/10.1023/A:1018483722417

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018483722417

Navigation