Skip to main content
Log in

The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Retrotransposons make up a major fraction – sometimes more than 40% – of all plant genomes investigated so far. We have isolated the reverse transcriptase domains of the Ty1-copia group elements from several species, ranging in genome size from some 100 Mbp to 23 000 Mbp, and determined the distribution patterns of these retrotransposons on metaphase chromosomes and within interphase nuclei by DNA:DNA in situ hybridization. With some exceptions, the reverse transcriptase domains were distributed over the length of the chromosomes. Exclusion from rDNA sites and some centromeres (e.g., slash pine, 23 000 Mbp, or barley, 5500 Mbp) is frequent, whereas many species exclude retrotransposons from other sites of heterochromatin (e.g., intercalary and centromeric sites in broad bean). In contrast, in the plant Arabidopsis thaliana, widely used for plant molecular genetic studies because of its small genome (c. 100 Mbp), the Ty1-copia group reverse transcriptase gene domains are concentrated in the centromeric regions, collocalizing with the 180 bp satellite sequence pAL1. Unlike the pAL1 sequence, however, the Ty1-copia signal is also detectable as weaker, diffuse hybridization along the lengths of the chromosomes. Possible mechanisms for evolution of the contrasting distributions are discussed. Understanding the physical distribution of retrotransposons and comparisons of the distribution between species is critical to understanding their evolution and the significance for generation of the new patterns of variability and in speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, M.D. & I.J. Leitch, 1995. Nuclear DNA amounts in angiosperms. Ann. Bot. 76: 113–176.

    Article  CAS  Google Scholar 

  • Bennett, M.D., J.B. Smith & J.S. Heslop-Harrison, 1982. Nuclear DNA amounts in angiosperms. Proc. R. Soc. Lond. B 216: 179–199.

    Article  CAS  Google Scholar 

  • Bennetzen, J.L., K. Schrick, P.S. Springer, W.E. Brown & P. San-Miguel, 1994. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37: 565–576.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., P. SanMiguel, C-N. Liu, M. Chen, A. Tikhonov, A.C. Oliveira, Y-K. Jin & Z. Avramova, 1996, Microcollinearity and segmental duplication in the evolution of grass nuclear genomes, pp. 1–3 in Unifying Plant Genomes. 50th SEB Symposium, edited by Heslop-Harrison, Company of Biologists, Cambridge.

    Google Scholar 

  • Brandes, A., J.S. Heslop-Harrison, A. Kamm, S. Kubis, R.L. Doudrick & T. Schmidt, 1997a. Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol. Biol. 33: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Brandes, A., H. Thompson, C. Dean & J.S. Heslop-Harrison, 1997b. Multiple repetitive DNAsequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res. 5: 238–246.

    Article  PubMed  CAS  Google Scholar 

  • D'Amato, F., 1991. Nuclear changes in cultured plant cells. Caryologia 44: 217–224.

    Google Scholar 

  • Flavell, A.J., 1992. Tyl-copia group retrotransposons and the evolution of retroelements in the eukaryotes. Genetica 86: 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Flavell, A.J., E. Dunbar, R. Anderson, S.R. Pearce, R. Hartley & A. Kumar, 1992. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucl. Acids Res. 20: 3639–3644.

    PubMed  CAS  Google Scholar 

  • Flavell, A.J., S.R. Pearce & A. Kumar, 1994. Plant transposable elements and the genome. Curr. Op. Genet. Devel. 4: 838–844.

    Article  CAS  Google Scholar 

  • Flavell, R.B., 1986. Repetitive DNA and chromosome evolution in plants. Phil. Trans. R. Soc. Lond. B 312: 227–242.

    CAS  Google Scholar 

  • Heslop-Harrison, J.S., T. Schwarzacher, K. Anamthawat-Jónsson, A.R. Leitch, M. Shi & I.J. Leitch, 1991. In situ hybridization with automated chromosome denaturation. Technique 3: 109–115.

    Google Scholar 

  • Hirochika, H., K. Sugimoto, Y. Otsuki, H. Tsugawa & M. Kanda, 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783–7788.

    Article  PubMed  CAS  Google Scholar 

  • Kamm, A., R.L. Doudrick, J.S. Heslop-Harrison & T. Schmidt, 1996. The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc. Natl. Acad. Sci. USA 93: 2708–2713.

    Article  PubMed  CAS  Google Scholar 

  • Katsiotis, A., T. Schmidt & J.S. Heslop-Harrison, 1997. Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena. Genome 39: 410–417.

    Google Scholar 

  • Kumar, A., 1996. The adventures of the Ty1-copia group of retro-transposons in plants. Trends Genet. 12: 41–43.

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz, U. & D.J. Lydiate, 1995. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meiosis. Genome 38: 255–264.

    PubMed  CAS  Google Scholar 

  • Maluszynska, J. & J.S. Heslop-Harrison, 1991. Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J. 1: 159–166.

    Article  Google Scholar 

  • Manninen, I. & A.H. Schulman, 1993. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol. Biol. 22: 829–846.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapater, J.M., M.A. Estelle & C.R. Somerville, 1986. A highly repeated DNA sequence in Arabidopsis thaliana. Mol. Gen. Genet. 204: 417–423.

    Article  CAS  Google Scholar 

  • McClintock, B., 1984. The significance of responses of the genome to challenge. Science 226: 792–801.

    PubMed  CAS  Google Scholar 

  • Mhiri, C., J-B. More, S. Vernhettes, J.M. Casacuberta, H. Lucas & M-A. Grandbastien, 1997. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol. 33: 1–10.

    Article  Google Scholar 

  • Murata, M., Y. Ogura & F. Motoyoshi, 1994. Centromeric repetitive sequences in Arabidopsis thaliana. Jap. J. Genet. 69: 361–370.

    Article  CAS  Google Scholar 

  • Parkin, I.A.P., A.G. Sharpe, D.J. Keith & D.J. Lydiate, 1995. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38: 1122–1131.

    PubMed  CAS  Google Scholar 

  • Pearce, S.R., G. Harrison, M. Wilkinson, D. Li, J.S. Heslop-Harrison, A.J. Flavell & A. Kumar, 1996a. The Ty1-copia group retrotransposons in Vici a species: copy number, sequence heterogeneity and chromosomal localisation. Mol. Gen. Genet. 250: 305–315.

    PubMed  CAS  Google Scholar 

  • Pearce, S.R., U. Pich, G. Harrison, A.J. Flavell, J.S. Heslop-Harrison, I. Schubert & A. Kumar, 1996b. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the telomeric heterochromatin. Chromosome Res. 4: 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, S.R., G. Harrison, J.S. Heslop-Harrison, A.J. Flavell & A. Kumar, 1997. Characterisation and genomic organisation of Ty1-copia group retrotransposons in rye (Secale cereale). Genome, in press.

  • Pearce, S.R., A. Kumar & A.J. Flavell, 1996c. Retrotransposon expression in potato. Plant Cell Reports 15: 949–953.

    Article  CAS  Google Scholar 

  • Pedersen, C. & I. Linde-Laursen, 1994. Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res. 2: 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Pélissier, T., S. Tutois, S. Tourmente, J.M. Deragon & G. Picard, 1996. DNAregions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97: 141–151.

    Article  PubMed  Google Scholar 

  • Pouteau, S., E. Huttner, M-A. Grandbastien & M. Caboche, 1991. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10: 1911–1918.

    PubMed  CAS  Google Scholar 

  • Rees, H., 1986. The consequences of DNA change in chromosomes: Lathyrus and lathyrism. Proc. int. symposium sponsored by Inst. de. biocenotique experimentale des agrosystemes (IBEAS), edited by A.K. Kaul and D. Com. Paris, Third World.

  • Rees, H. & R.N. Jones, 1972. The origin of the wide species variation in nuclear DNA content. Int. Rev. Cytol. 32: 53–91.

    Article  PubMed  CAS  Google Scholar 

  • Richards, A.J., 1989. A comparison of within-plant karyological heterogeneity between agamospermous and sexual Taraxacum (Compositae) as assessed by the nucleolar organiser chromosome. Pl. Syst. Evol. 163: 177–185.

    Article  Google Scholar 

  • San Miguel, P., A. Tikhonov, Y-K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotrans-posons in the intergenic regions of the maize genome. Science 274: 765–738.

    Google Scholar 

  • Schmidt, T. & J.S. Heslop-Harrison, 1994. Variability and evolution of highly repeated DNA sequences in the genus Beta. Genome 36: 1074–1079.

    Google Scholar 

  • Schmidt, T. & J.S. Heslop-Harrison, 1996. The physical and genomic organization of microsatellites in sugar beet. Proc. Natl. Acad. Sci. USA 93: 8761–8765.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, T., S. Kubis & J.S. Heslop-Harrison, 1995. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome. Chromosome Res. 3: 335–345.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher, T., 1994. Mapping in plants: progress and prospects. Curr. Op. Genet. Devel. 4: 868–874.

    Article  CAS  Google Scholar 

  • Schwarzacher, T., A.R. Leitch & J.S. Heslop-Harrison, 1994, DNA:DNA in situ hybridization - methods for light microscopy, pp. 127–155 in Plant Cell Biology: A Practical Approach, edited by N. Harris & K.J. Oparka. Oxford University Press, Oxford.

    Google Scholar 

  • Seal, A.G., 1983, The distribution and consequences of changes in nuclear DNA content, pp. 225–232 in Kew Chromosome Conference II, edited by P.E. Brandham & M.D. Bennett. George Allen & Unwin, London.

    Google Scholar 

  • Sharpe, A.G., I.A.P. Parkin, D.J. Keith & D.J. Lydiate, 1995. Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38: 1112–1121.

    PubMed  CAS  Google Scholar 

  • Thompson, H., R. Schmidt, A. Brandes, J.S. Heslop-Harrison & C. Dean, 1996. A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol. Gen. Genet. 253: 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Tiersch, T.R. & S.S. Wachtel, 1991. On the evolution of genome size of birds. J. Heredity 82: 363–368.

    CAS  Google Scholar 

  • Waugh, R., K. McLean, A.J. Flavell, S.R. Pearce, A. Kumar, B.T. Thomas & W. Powell 1997. Genetic distribution of BARE-1 retro-transposable elements in the barley genome revealed by sequence-specific amplification polymorphism (S-SAP). Mol. Gen. Genet. 253: 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Wendel, J.F., A. Schnabel & T. Seelanan, 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci 92: 280–284.

    Article  PubMed  CAS  Google Scholar 

  • Wessler, S.R., 1996. Plant retrotransposons: Turned on by stress. Current Biol. 6: 959–961.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heslop-Harrison, J.(., Brandes, A., Taketa, S. et al. The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100, 197–204 (1997). https://doi.org/10.1023/A:1018337831039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018337831039

Navigation