Skip to main content
Log in

Analysis of the impedance spectra of short conductive fiber-reinforced composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The presence of small amounts of short conductive fibers in a composite of finite matrix conductivity results in the subdivision of the one matrix impedance arc into two separate low and high frequency arcs in the complex impedance plane. These features are attributable to a “frequency-switchable” interfacial impedance on the fiber surfaces, rendering them insulating at DC and low AC frequencies, but conducting at intermediate frequencies. A combination of physical simulations (single wires in tap water) and pixel-based computer modeling was employed to investigate the roles of fiber pull-out, debonding, and orientation on the impedance response of fiber-reinforced composites. The ratio of the low frequency arc size to the overall DC resistance (γ-parameter) is sensitive to pull-out and/or debonding, especially when a fiber just barely makes contact with the matrix. The γ-parameter is also quite sensitive to fiber orientation with respect to the direction of the applied field. Ramifications for the characterization of cement, ceramic, and polymer matrix composites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Douglas and E. J. Garboczi, Adv.Chem.Phys. 91 (1995) 85.

    Google Scholar 

  2. R. Zallen, “The Physics of Amorphous Solids” (Wiley, New York, 1983) pp. 135–204.

    Google Scholar 

  3. D. S. Mclachlan, M. Blaszkiewicz and R. E. Newham, J.Am.Ceram.Soc. 73 (1990) 2187.

    Google Scholar 

  4. N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita and Y. Ohtsuka, J.Am.Ceram.Soc. 76 (1993) 875.

    Google Scholar 

  5. X. Wang and D. D. L. Chung, Smart Mater.Struc. 6 (1997) 504.

    Google Scholar 

  6. D. D. L. Chung, Mat.Sci.Eng. R 22 (1998) 57.

    Google Scholar 

  7. A. Rocha and A. Acrivos, Q.J.Mech.Appl.Math. 26 (1973) 441.

    Google Scholar 

  8. G. H. Fredrickson and E. S. G. Shaqfeh, Phys.Fluids A 1 (1989) 3.

    Google Scholar 

  9. M. B. Mackaplow, E. S. G. Shaqfeh, and R. L. Shiek, Proc.Royal.Soc.Lond. A 447 (1994) 77.

    Google Scholar 

  10. R. R. Sundararajakumar and D. L. Koch, ibid. A 455 (1999) 1923.

    Google Scholar 

  11. A. Rocha and A. Acrivos, ibid. A 337 (1974) 123.

    Google Scholar 

  12. X. Wang and D. D. L. Chung, Sensors and Actuators A 71 (1998) 208.

    Google Scholar 

  13. P.-W. Chen and D. D. L. Chung, J.Am.Ceram.Soc. 78 (1995) 816.

    Google Scholar 

  14. Idem., ACI Mat.J. 93 (1996) 341.

    Google Scholar 

  15. S. Wang and D. D. L. Chung, Smart Mater.Struc. 6 (1997) 199.

    Google Scholar 

  16. X. Wang and D. D. Chung, Carbon 35 (1997) 1649.

    Google Scholar 

  17. H. Fricke, J.Phys.Chem. 57 (1953) 934.

    Google Scholar 

  18. N. Bonanos, B. C. H. Steele, E. P. Butler, W. B. Johnson, W. L. Worrell, D. D. Macdonald and M. C. H. Mckubre, in “Impedance Spectroscopy: Emphasizing Solid Materials and Systems,” edited by J. R. Macdonald (Wiley, New York, 1987) p. 191.

    Google Scholar 

  19. D. G. Han and G. M. Choi, Electrochim.Acta 44 (1999) 4145.

    Google Scholar 

  20. P. Gu, Z. Xu, P. Xie and J. J. Beaudoin, Cem.Concr. Res. 23 (1993) 675.

    Google Scholar 

  21. S. J. Ford, J. D. Shane and T. O. Mason, ibid. 28 (1998) 1737.

    Google Scholar 

  22. X. Fu, E. Ma., D. D. L. Chung and W. A. Anderson, Cem.Concr.Res. 27 (1997) 845.

    Google Scholar 

  23. R. Gerhardt, Proc.Cer.Eng.Sci. 15 (1994) 1174.

    Google Scholar 

  24. C.-A. Wang, Y. Huang, Y. Li and Z. Zhang, J.Am. Ceram.Soc. 83 (2000) 2689.

    Google Scholar 

  25. D. Kaushik, M. N. Alias and R. Brown, Corrosion 47 (1991) 859.

    Google Scholar 

  26. J. M. Torrents, T. O. Mason and E. J. Garboczi, Cem.Concr.Res. 30 (2000) 585.

    Google Scholar 

  27. B. A. Boukamp, “Equivalent Circuit (EQUIVCRT.PAS),” Dept. of Chemical Engineering, University of Twente, The Netherlands (1990).

    Google Scholar 

  28. E. J. Garboczi, “Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials,” NIST Internal Report 6269 (1998). Also available at http://ciks.cbt.nist.gov/garboczi/, Chap. 2.

  29. R. Holm, Electric Contacts: Theory and Application” (Springer-Verlag, New York, 1967).

    Google Scholar 

  30. J. Newman, J.Electrochem.Soc. 113 (1966) 501.

    Google Scholar 

  31. X. Fu and D. D. L. Chung, ACI Mater.J. 94 (1997) 203.

    Google Scholar 

  32. S. J. Ford and T. O. Mason, in “Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures,” edited by N. S. Burke, E. Escalante, C. K. Nmai and David Whiting, ASTM STP 1276 (1995).

  33. D. S. Mclachlan, J.-H. Hwang and T. O. Mason, J.Electroceramics 5 (2000) 37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torrents, J.M., Mason, T.O., Peled, A. et al. Analysis of the impedance spectra of short conductive fiber-reinforced composites. Journal of Materials Science 36, 4003–4012 (2001). https://doi.org/10.1023/A:1017986608910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017986608910

Keywords

Navigation