Skip to main content
Log in

The Effects of CO2, CO and H2 Co-Reactants on Methane Reactions Catalyzed by Mo/H-ZSM-5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of CO2, CO and H2 co-reactants on CH4 pyrolysis reactions catalyzed by Mo/H-ZSM-5 were investigated as a function of reaction temperatures and co-reactant and CH4 concentrations. Total CH4 conversion rates were not affected by CO2 co-reactants, except at high CO2 pressures, which led to the oxidation of the active MoC x species, but CH x intermediates formed in rate-determining C–H bond activation steps increasingly formed CO instead of hydrocarbons as CO2 concentrations increased. CO formation rates increased with increasing CO2 partial pressure; all entering CO2 molecules reacted with CH4 within the catalyst bed to form two CO molecules at 950-1033 K. In contrast, hydrocarbon formation rates decreased linearly with increasing CO2 partial pressure and reached undetectable levels at CO2/CH4 ratios above 0.075 at 950 K. CO formation continued for a short period of time at these CO2/CH4 molar ratios, but then all catalytic activity ceased, apparently as a result of the conversion of active carbide structures to MoO x . The removal of CO2 from the CH4 stream led to gradual catalyst reactivation via reduction-carburization processes similar to those observed during the initial activation of MoO x /H-ZSM-5 precursors in CH4. The CO2/CH4 molar ratios required to inhibit hydrocarbon synthesis were independent of CH4 pressure because of the first-order kinetic dependencies of both CH4 and CO2 activation steps. These ratios increased from 0.075 to 0.143 as reaction temperatures increased from 950 to 1033 K. This temperature dependence reflects higher activation energies for reductant (CH4) than for oxidant (CO2) activation, leading to catalyst oxidation at higher relative oxidant concentrations as temperature increases. The scavenging of CH x intermediates by CO2-derived species leads also to lower chain growth probabilities and to a significant inhibition of catalyst deactivation via oligomerization pathways responsible for the formation of highly unsaturated unreactive deposits. CO co-reactants did not influence the rate or selectivity of CH4 pyrolysis reactions on Mo/H-ZSM-5; therefore, CO formed during reactions of CO2/CH4 mixtures are not responsible for the observed effects of CO2 on reaction rates and selectivities, or in catalyst deactivation rates during CH4 reactions. H2 addition studies showed that H2 formed during CH4/CO2 reactions near the bed inlet led to inhibited catalyst deactivation in downstream catalyst regions, even after CO2 co-reactants were depleted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lunsford, Catal. Today 6 (1996) 235.

    Google Scholar 

  2. L. Guczi, R.A. VanSanten and K.V. Sarma Catal. Rev. 38 (1996) 249.

    Google Scholar 

  3. J.B. Claridge, M.L.H. Green, S.C. Tsang and A.P.E. York, Appl. Catal. 89 (1992) 103.

    Google Scholar 

  4. M.L.H. Green, S.C. Tsang, P.D.F. Vernon and A.P.E. York, Ind. Eng. Chem. Res. 32 (1993) 1030.

    Google Scholar 

  5. L.S. Wang, L.X. Tao, M.S. Xie, G.F. Xu, J.S. Huang and Y.D. Xu, Catal. Lett. 21 (1993) 35.

    Google Scholar 

  6. B.M. Weckhuysen, D.J. Wang, M.P. Roseynek and J.H. Lunsford, J. Catal. 175 (1998) 338.

    Google Scholar 

  7. C.L. Zhang, S. Li, Y. Yuan, W. Zhang, T. Wu and L.W. Lin, Catal. Lett. 56 (1998) 207.

    Google Scholar 

  8. S.T. Liu, L.S. Wang, R. Ohnishi and M. Ichikawa, J. Catal. 181 (1999) 175.

    Google Scholar 

  9. W. Ding, G.D. Meitzner, D.O. Marler and E. Iglesia, J. Phys. Chem. B 105 (2001) 3928.

    Google Scholar 

  10. W. Ding, S. Li, G.D. Meitzner and E. Iglesia, J. Phys. Chem. B 105 (2001) 506.

    Google Scholar 

  11. R.W. Borry III, Y.H. Kim, A. Huffsmith, J.A. Reimer and E. Iglesia, J. Phys. Chem. B 103 (1999) 5787.

    Google Scholar 

  12. F. Solymosi, A. Erdohelyi and A. Szoke, Catal. Lett. 32 (1995) 43.

    Google Scholar 

  13. A. Szoke and F. Solymosi, Appl. Catal. A: General 142 (1996) 361.

    Google Scholar 

  14. F. Solymosi, J. Cserenyi, A. Szoke, T. Bansagi and A. Oszko, J. Catal. 165 (1997) 156.

    Google Scholar 

  15. S.-T. Wong, Y. Xu, S. Liu, L. Wang and X. Guo, Catal. Lett. 38 (1996) 39.

    Google Scholar 

  16. D. Wang, J.H. Lunsford and M.P. Rosynek, Topics Catal. 3 (1996) 289.

    Google Scholar 

  17. J.Z. Zhang, M.A. Long and R.F. Howe, Catal. Today 44 (1999) 293.

    Google Scholar 

  18. F. Solymosi, A. Szoke and J. Cserenyi, Catal. Lett. 39 (1996) 157.

    Google Scholar 

  19. Y.D. Liu, J. Lin and K.L. Tan, Catal. Lett. 50 (1998) 165.

    Google Scholar 

  20. R. Ohnishi, S. Liu, Q. Dong, L. Wang and M. Ichikawa, J. Catal. 182 (1999) 92.

    Google Scholar 

  21. D. Wang, J.H. Lunsford and M.P. Rosynek, J. Catal. 169 (1997) 347.

    Google Scholar 

  22. L. Wang, L. Tao, M. Xie, G. Xu, J. Huang and Y. Xu, Catal. Lett. 21 (1993) 35.

    Google Scholar 

  23. S. Liu, L. Wang, Q. Dong, R. Ohnishi and M. Ichikawa, Chem. Commun. (1998) 1217.

  24. L. Wang, R. Ohnishi and M. Ichikawa, Catal. Lett. 62 (1999) 29.

    Google Scholar 

  25. L. Wang, R. Ohnishi and M. Ichikawa, J. Catal. 190 (2000) 276.

    Google Scholar 

  26. R. Ohnishi, L. Xu, K. Issoh and M. Ichikawa, Stud. Surf. Sci. Catal. (2001) 136.

  27. J.R. Rostrup-Nielsen in: Catalysis: Science and Technology, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1984) p. 1.

    Google Scholar 

  28. D.R. Stull, F. Edgar, J. Westrum and G.C. Sinke, in: The Chemical Thermodynamics of Organic Compounds (Robert E. Krieger Publishing, Malabar, FL, 1987).

    Google Scholar 

  29. J.B. Claridge, A.P.E. York, A.J. Brungs, C. Marquez-Alvarez, J. Sloan, S.C. Tsang and M.L.H. Green, J. Catal. 180 (1998) 85.

    Google Scholar 

  30. C. Gueret, M. Daroux and F. Billaud, Chem. Eng. Sci. 52 (1997) 815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Nutt, M.A. & Iglesia, E. The Effects of CO2, CO and H2 Co-Reactants on Methane Reactions Catalyzed by Mo/H-ZSM-5. Catalysis Letters 81, 271–279 (2002). https://doi.org/10.1023/A:1016553828814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016553828814

Navigation