Skip to main content
Log in

Esterase-Sensitive Cyclic Prodrugs of Peptides: Evaluation of an Acyloxyalkoxy Promoiety in a Model Hexapeptide

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate a cyclic acyloxyalkoxycarbamate prodrug of a model hexapeptide (H-Trp-Ala-Gly-Gly-Asp-Ala-OH) as a novel approach to enhance the membrane permeation of the peptide and stabilize it to metabolism.

Methods. Conversion to the linear hexapeptide was studied at 37°C in aqueous buffered solutions and in various biological milieus having measurable esterase activities. Transport and metabolism characteristics were assessed using the Caco-2 cell culture model.

Results. In buffered solutions the cyclic prodrug degraded chemically to the linear hexapeptide in stoichiometric amounts. Maximum stability was observed between pH 3–4. In 90% human plasma (t 1/2 = 100 ± 4 min) and in homogenates of the rat intestinal mucosa (t - = 136 ± 4 min) and rat liver (t - = 65 ± 3 min), the cyclic prodrug disappeared faster than in buffered solution, pH 7.4 (t - = 206 ± 11 min). Pretreatment of these media with paraoxon significantly decreased the degradation rate of the prodrug. When applied to the apical side of Caco-2 cell monolayers, the cyclic prodrug (t - = 282 ± 25 min) was significantly more stable than the hexapeptide (t - = 14 min) and at least 76-fold more able to permeate (P app = 1.30 ± 0.15 × 10−7 cm/ s) than the parent peptide (P app ≤ 0.17 × 10−8 cm/s).

Conclusions. Preparation of a cyclic peptide using an acyloxyalkoxy promoiety reduced the lability of the peptide to peptidase metabolism and substantially increased its permeation through biological membranes. In various biological media the parent peptide was released from the prodrug by an apparent esterase-catalyzed reaction, sensitive to paraoxon inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. H. L. Lee and A. Yamamoto. Adv. Drug Delivery Rev. 4:171–207 (1990).

    Google Scholar 

  2. V. Bocci. Adv. Drug Delivery Rev. 4:149–169 (1990).

    Google Scholar 

  3. X. H. Zhou. J. Controlled Release 29:239–252 (1994).

    Google Scholar 

  4. G. M. Pauletti, S. Gangwar, G. T. Knipp, M. M. Nerurkar, F. W. Okumu, K. Tamura, T. J. Siahaan, and R. T. Borchardt. J. Controlled Release 41:3–17 (1996).

    Google Scholar 

  5. R. A. Gray, D. G. Vander Velde, C. J. Burke, M. C. Manning, C. R. Middaugh, and R. T. Borchadt. Biochemistry 33:1323–1331 (1994).

    Google Scholar 

  6. W. A. Banks, A. J. Kastin, D. H. Coy, and E. Angulo. Brain. Res. Bull. 17:155–158 (1986).

    Google Scholar 

  7. H. Bundgaard. Adv. Drug Delivery Rev. 8:1–38 (1992).

    Google Scholar 

  8. R. Oliyai and V. J. Stella. Ann. Rev. Pharmacol. Toxicol. 32:521–544 (1993).

    Google Scholar 

  9. J. K. McDonald and A. J. Barrett. Mammalian Proteases: A Glossary and Bibliography, Vol. 2, Exopeptidases, Academic Press, New York, 1986.

    Google Scholar 

  10. F. W. Okumu, G. M. Pauletti, D. G. Vander Velde, T. J. Siahaan, and R. T. Borchardt. Pharm. Res. 12:S-302 (1995).

    Google Scholar 

  11. S. Gangwar, G. M. Pauletti, T. J. Siahaan, V. J. Stella, and R. T. Borchardt. J. Org. Chem. (submitted).

  12. M. Inoue, M. Morikawa, M. Tsuboi, and M. Sugiura. Jpn. J. Pharmacol. 29:9–16 (1979).

    Google Scholar 

  13. F. M. Williams. Clin. Pharmacokinet. 10:392–403 (1985).

    Google Scholar 

  14. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Gastroenterology 96:736–749 (1989).

    Google Scholar 

  15. P. Artursson. J. Pharm. Sci. 79:476–482 (1990).

    Google Scholar 

  16. M. Pinto, S. Robine-Leon, M.-D. Appay, M. Kedinger, N. Tradou, E. Dussaulx, B. Lacroix, P. Simon-Assmann, K. Haffen, J. Fogh, and A. Zweibaum. Biol. Cell 47:323–330 (1983).

    Google Scholar 

  17. G. Wilson, I. F. Hassan, C. J. Dix, I. Williamson, R. Shah, and M. Mackay. J. Controlled Release 11:25–40 (1990).

    Google Scholar 

  18. H. Liu, S. Ong, L. Glunz, and C. Pidgeon. Anal. Chem. 67:3550–3557 (1995).

    Google Scholar 

  19. P. F. Augustijns and R. T. Borchardt. Drug Metab. Dispos. 23:1372–1378 (1995).

    Google Scholar 

  20. C. S. Cook, P. J. Karabatsos, G. L. Schoenhard, and A. Karim. Pharm. Res. 12:1158–1164 (1995).

    Google Scholar 

  21. W. N. Aldridge. Biochem. J. 53:117–124 (1953).

    Google Scholar 

  22. K. Takahashi, S. Tamagawa, H. Sakano, T. Katagi, and N. Mizuno. Biol. Pharm. Bull. 18:1401–1404 (1995).

    Google Scholar 

  23. W. N. Aldridge. Biochem. J. 53:110–117 (1953).

    Google Scholar 

  24. D. S. Auld and B. Holmquist. Biochemistry 13:4355–4361 (1974).

    Google Scholar 

  25. S. Gangwar, S. D. S. Jois, T. J. Siahaan, D. G. Vander Velde, V. J. Stella, and R. T. Borchardt. Pharm. Res. 13:1657–1662 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauletti, G.M., Gangwar, S., Okumu, F.W. et al. Esterase-Sensitive Cyclic Prodrugs of Peptides: Evaluation of an Acyloxyalkoxy Promoiety in a Model Hexapeptide. Pharm Res 13, 1615–1623 (1996). https://doi.org/10.1023/A:1016472119387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016472119387

Navigation