Skip to main content
Log in

Life span: does the limit to survival depend upon metabolic efficiency under stress?

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Survival to old age in natural populations is enhanced by high vitality and resilience which depends upon substantial homeostasis and energetic amd metabolic efficiency underlain by genes for stress resistance. Under this assumption increased longevity follows from primary selection for stress resistance where stress targets energy carriers. Furthermore old and young fitness should be correlate dirrespective of age under the stressful selection regime of natural populations. In contrast, antagonistic pleiotropy is most likely under the less rigorous selection regime of well-nourished humans and laboratory populations surviving to old age. Similarly, hormesis for longevity, for example from a mild temperature stress or restricted food intake is most likely under benign environmental conditions. Assuming that aging in natural populations depends upon ecological circumstances, large evolutionary increases in life span are unlikely under the stress theory of aging since organisms are frequently close to their limits of survival where metabolic efficiency is at a premium. Exceptions can occur in island populations and for mutants under laboratory conditions since the risks from environmental hazards are reduced, and life span becomes extended as a consequence. In modern human populations, selection for stress resistance is less intense than in earlier times which should be permissive of the accumulation of stress-sensitive mutants under the mutation-accumulation theory of aging. However, this process is ultimately likely to restrict the evolution of life-span extensions in the future especially if abiotic conditions deteriorate, when survival would depend more directly on metabolic efficiency under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams PA and Ludwig D (1995) Optimality theory, Gompertz law, and the disposable soma theory of senescence. Evolution 49: 1055-1066

    Article  Google Scholar 

  • Allison DB, Fontaine KR and Cheskin LJ (2001) Metabolic disharmony and mortality. Med Hypotheses 56: 604-609

    Article  PubMed  CAS  Google Scholar 

  • Arking R (2001) Gene expression and regulation in the extended longevity phenotypes of Drosophila. Ann NY Acad Sci 928: 157-167

    Article  PubMed  CAS  Google Scholar 

  • Arking R, Burde V, Graves K, Hari R, Feldman E, Zeeve A et al. (2000) Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns. Exp Gerontol 35: 167-185

    Article  PubMed  CAS  Google Scholar 

  • Austad SN (1993) Retarded senescence in an insular population of Virginia oposssums (Didelphis virginiana). J Zool London 229: 695-708

    Article  Google Scholar 

  • Austad SN (1997) Why We Age. New York, John Wiley Beckman KB and Ames BN (1998) Mitochondrial aging: open questions. Annals NY Acad Sci 854: 118-127

    Google Scholar 

  • Boulétreau-Merle J, Fouillet P and Terrier O (1992) Clinal and seasonal variations in initial retention of virgin Drosophla melanogaster females as a strategy for fitness. Evol Ecol 6: 223-242

    Article  Google Scholar 

  • Buck S, Vettraino J, Force AG and Arking R (2000) Extended longevity in Drosophila is consistently associated with a decrease in developmental viability. J Gerontol 55A: B292-B301

    Google Scholar 

  • Donahaye E (1993) Biological differences between strains of Tribolium castaneum selected for resistance to hypoxia and hypercarbia, and the unselected strain. Physiol Entomol 18: 247-250

    Google Scholar 

  • Drapeau MD, Gass EK, Simison MD, Mueller LD and Rose MR (2000) Testing the heterogeneity theory of late-life mortality plateaus by using cohorts of Drosophila melanogaster. Exp Gerontol 35: 71-84

    Article  PubMed  CAS  Google Scholar 

  • Finkel T and Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. Clarendon Press, Oxford

    Google Scholar 

  • Gerber LM, Williams GC and Gray SJ (1999) The nutrient-toxin dosage continuum in human evolution and modern health. Quart Rev Biol 74: 273-289

    Article  PubMed  CAS  Google Scholar 

  • Gonos ES (2000) Genetics of aging: lessons from centenarians. Exp Gerontol 35: 15-21

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging-a theory based on free radical and radiation chemistry. J Gerontol 11: 298-300

    PubMed  CAS  Google Scholar 

  • Harman D (2001) Aging: overview. Ann NY Acad Aci 928: 1-21

    Article  CAS  Google Scholar 

  • Harman D, Holliday R and Meydani M (eds) (1998) Towards prolongation of the healthy life span. Ann NY Acad Sci 854: 1-524

  • Harshman LG and Haberer BA (2000) Oxidative stress resistance: a robust correlated response to selection in extended longevity lines of Drosophila melanogaster? J Gerontol A55: B414-B417

    Google Scholar 

  • Hayflick L (2000) The future of ageing. Nature 408: 267-269

    Article  PubMed  CAS  Google Scholar 

  • Hercus M and Loeschcke V (2001) Comments to paper by S. Rattan: applying hormesis in aging research and therapy-a perspective from evolutionary biology. Human Exp Toxicol 20: 305-308

    Article  CAS  Google Scholar 

  • Hercus MJ, Loeschcke V and Rattan SIS (2001) The consequence of repeated mild heat stress exposures on fecundity and longevity in Drosophila. Funct Ecol (in press)

  • Hoffmann AA and Parsons PA (1993) Selection for adult desiccation resistance in Drosophila melanogaster: fitness components, larval resistance and stress correlations. Biol J Linn Soc 48: 43-54

    Article  Google Scholar 

  • Jazwinski SM (1999) Molecular mechanisms of yeast longevity. Trends Microbiol 7: 247-252

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (2000) Metabolic control and ageing. Trends Genetics 16: 506-511

    Article  CAS  Google Scholar 

  • Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York

    Google Scholar 

  • Kerber RA, O'Brien E, Smith BR and Cawthon RM (2001) Familial excess longevity in Utah longevities. J Gerontol 56A: B130-B139

    Google Scholar 

  • Klingenberg CP and Spence TR (1997) On the role of body size for life-history evolution. Ecol Ent 22: 55-68

    Article  Google Scholar 

  • Kohane MJ (1988) Stress, altered energy availability and larval fitness in Drosophila melanogaster. Heredity 60: 273-281

    PubMed  Google Scholar 

  • Kondrashov AS and Houle D (1994) Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc R Soc London B 258: 221-227

    CAS  Google Scholar 

  • Lin Y-J, Seroude L and Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943-946

    Article  PubMed  CAS  Google Scholar 

  • Lithgow GJ, White TM, Melov S and Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92: 7540-7544

    Article  PubMed  CAS  Google Scholar 

  • Łomnicki A and Jasieński (2000) Does fitness erode in the absence of selection? An experimental test with Tribolium. J Heredity 91: 407-411

    Article  Google Scholar 

  • Luckey TD (1991) Radiation Hormesis. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Luckinbill LS and Foley P (2000) Experimental and empirical approaches in the study of aging. Biogerontology 1: 3-13

    Article  PubMed  CAS  Google Scholar 

  • Martin GM (2001) Frontiers of aging. Science 294: 13

    Article  PubMed  CAS  Google Scholar 

  • Masoro EJ and Austad SN (1996) The evolution of the antiaging action of dietary restriction: a hypothesis. J Gerontol 51A: B387-B391

    CAS  Google Scholar 

  • McClearn GE (1987) The many genetics of aging In:Woodhead AD and Thompson KH (eds) Evolution of Longevity in Animals: a Comparative Approach, pp 135-144. Plenum Press, New York

    Google Scholar 

  • Miller RA (2001) Biomarkers of aging: prediction of longevity by using age-sensitive T-cell subset determinations in a middleaged, genetically heterogeneous mouse population. J Gerontol 56A: B180-B186

    CAS  Google Scholar 

  • Minois N (2000) Longevity and aging: beneficial effects of exposure to mild stress. Biogerontology 1: 15-29

    Article  PubMed  CAS  Google Scholar 

  • Mitrovski P and Hoffmann AA (2001) Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster: evidence for clinal variation under semi-natural conditions. Proc R Soc London B 268: 2163-2168

    Article  CAS  Google Scholar 

  • Mitton JB (1993) Enzyme heterozygosity, metabolism, and developmental variability. Genetica 89: 47-63

    Article  CAS  Google Scholar 

  • Nevo E, Filippucci MG and Beiles A (1994) Genetic polymorphisms in subterranian mammals (Spalax ehrenbergi superspecies) in the Near East revisited: Patterns and theory. Heredity 72: 465-487

    PubMed  Google Scholar 

  • Nevo E, Rashkovetsky E, Pavlicek T and Korol A (1998) A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity 80: 9-16

    Article  PubMed  Google Scholar 

  • Parsons PA (1980) Adaptive strategies in natural populations of Drosophila. Ethanol tolerance, desiccation resistance, and development times in climatically optimal and extreme environments. Theroret Appl Genet 57: 257-266

    Google Scholar 

  • Parsons PA (1992) Evolutionary adaptation and stress: the fitness gradient. Evol Biol 26: 191-223

    Google Scholar 

  • Parsons PA (1993) Evolutionary adaptation and stress: energy budgets and habitats preferred. Behav Genet 23: 231-238

    Article  PubMed  CAS  Google Scholar 

  • Parsons PA (1995) Inherited stress resistance and longevity: a stress theory of ageing. Heredity 75: 216-221

    PubMed  Google Scholar 

  • Parsons PA (1996a) The limit to human longevity: an approach through a stress theory of ageing. Mech Ageing Dev 87: 211-218

    Article  PubMed  CAS  Google Scholar 

  • Parsons PA (1996b) Rapid development and a long life: an association expected under a stress theory of aging. Experientia 52: 643-646

    Article  PubMed  CAS  Google Scholar 

  • Parsons PA (1997) Stress-resistance genotypes, metabolic efficency and intrepreting evolutionary change In: Bijlsma R and Loeschcke V (eds) Environmental Stress, Adaptation and Evolution, pp 291-305. Birkhäuser Verlag, Basel

    Google Scholar 

  • Parsons PA (1998) Behavioural variability and limits to evolutionary adaptation under stress. Adv Study Behavior 27: 155-180

    Article  Google Scholar 

  • Parsons PA (2000a) Hormesis: an adaptive expectation with emphasis on ionizing radiation. J Appl Toxicol 20: 103-112

    Article  PubMed  CAS  Google Scholar 

  • Parsons PA (2000b) Caloric restriction, metabolic efficiency and hormesis. Human Exp Toxicol 19: 345-347

    Article  CAS  Google Scholar 

  • Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M et al. (2001) A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci USA 98: 10505-10508

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS (2001) Applying hormesis in aging research and therapy. Human Exp Toxicol 20: 281-285

    Article  CAS  Google Scholar 

  • Rogina B, Reenan RA, Nilsen SP and Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290: 2137-2140

    Article  PubMed  CAS  Google Scholar 

  • Rose MR (1991) Evolutionary Biology of Aging. Oxford University Press, New York

    Google Scholar 

  • Rose MR, Vu LN, Park SU and Graves JL Jr (1992) Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol 27: 241-250

    Article  PubMed  CAS  Google Scholar 

  • Schächter F (2000) The genetics of survival. Ann NY Acad Sci 908: 64-70

    Article  PubMed  Google Scholar 

  • Schnebel EM and Grossfield J (1988) Antagonistic pleiotropy: an interspecific Drosophila comparison. Evolution 42: 306-311

    Article  Google Scholar 

  • Tatar M, Chien SA and Priest NK (2001) Negligible senescence during reproductive dormancy in Drosophila melanogaster. Am Nat 158: 248-258

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR, Hollocher H, Lawler S and Johnston JS (1990) In Barker JSF, Starmer WT and MacIntyre RJ (eds) Ecological and Evolutionary Genetics of Drosophila, pp 17-35. Plenum Press, New York

    Google Scholar 

  • Toupance B, Godelle B, Gouyon P-H and Schächter F (1998) A model for antagonistic pleiotropic gene action for mortality and advanced age. Am J Hum Genet 62: 1525-1534

    Article  PubMed  CAS  Google Scholar 

  • Van Valen L (1976) Energy and evolution. Evol Theory 1: 179-229

    Google Scholar 

  • Vaupel JW (1988) Inherited frailty and longevity. Demography 25: 277-287

    PubMed  CAS  Google Scholar 

  • Vaupel JW, Carey JR, Christensen K, Johnson TE, Yashin AI, Holm NV et al. (1998) Biodemographic trajectories of longevity. Science 280: 855-860

    Article  PubMed  CAS  Google Scholar 

  • Walker DW, Jenkins NL, Harris J and Lithgow GJ (2000). Evolution of lifespan in C. elegans. Nature 405: 296-297

    Article  PubMed  CAS  Google Scholar 

  • White TCR (1993) The Inadequate Environment: Nitrogen and Abundance of Animals. Springer-Verlag, Berlin

    Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senesence. Evolution 11: 298-411

    Article  Google Scholar 

  • Yashin AI, DeBenedictis G, Vaupel JW, Tan Q, Andreev KF, Iachine IA et al. (2000) >Genes and longevity: lessons from studies of centenarians. J Gerontol 55A: B319-B328

    Google Scholar 

  • Yu BP and Chung HY (2001) Stress resistance by caloric restriction for longevity. Ann NY Acad Sci 928: 39-47

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, P.A. Life span: does the limit to survival depend upon metabolic efficiency under stress?. Biogerontology 3, 233–241 (2002). https://doi.org/10.1023/A:1016271005967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016271005967

Navigation