Skip to main content
Log in

Lipid Microemulsions for Improving Drug Dissolution and Oral Absorption: Physical and Biopharmaceutical Aspects

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This review highlights the state-of-the-art in pharmaceutical microemulsions with emphasis on self-emulsifying systems, from both a physical and biopharmaceutical perspective. Although these systems have several pharmaceutical applications, this review is primarily focused on their potential for oral drug delivery and intestinal absorption improvement.

Methods. Physicochemical characteristics and formulation design based on drug solubility and membrane permeability are discussed.

Results. Case studies in which lipid microemulsions have successfully been used to improve drug solubilization/dissolution and/or intestinal absorption of poorly absorbed drugs/peptides are presented.

Conclusions. Drug development issues such as commercial viability, mechanisms involved, range of applicability, safety, scale-up and manufacture are outlined, and future research and development efforts to address these issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. M. Eccleston. Microemulsions. In: J. Swarbrick and J. C. Boylan (eds). Encyclopedia of Pharmaceutical Technology. Marcel Dekker, New York, 1992, Vol. 9, pp. 375–421.

    Google Scholar 

  2. D. Attwood. Microemulsions. In: J. Kreuter (ed). Colloidal Drug Delivery Systems. Marcel Dekker, New York, 1994, pp. 31–71.

    Google Scholar 

  3. W. A. Ritschel. Microemulsions for improved peptide absorption from the gastrointestinal tract. Meth. Find. Exp. Clin. Pharmacol. 13: 205–220 (1993).

    Google Scholar 

  4. C. W. Pouton. Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int. J. Pharm. 27: 335–348 (1985).

    Google Scholar 

  5. S. A. Charman, W. N. Charman, M. C. Rogge, T. D. Wilson, F. J. Dutko and C. W. Pouton. Self-emulsifying drug delivery systems: formulation and biopharmaceutical evaluation of an investigational lipophilic compound. Pharm. Res. 9: 87–93, (1992).

    Google Scholar 

  6. N. H. Shah, M. T. Carvajal, C. I. Patel, M. H. Infeld and A. W. Malick, Self-emulsifying drug delivery systems with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J. Pharm. 106: 15–23 (1994).

    Google Scholar 

  7. R. J. Ptachcinsky, R. Venkataramanan, and G. J. Burckart, Clinical pharmacokinetics of Cyclosporin. Clin. Pharmacokinet. 11: 107–132 (1986).

    Google Scholar 

  8. J.M. Kovarik, E. A. Mueller, J. B. van Bree, W. Tetzloff and K. Kutz, Reduced inter-and intraindividual variability in Cyclosporine pharmacokinetics from a microemulsion formulation. J. Pharm. Sci. 83: 444–446 (1994).

    Google Scholar 

  9. Greiner, R. W. and D. F. Evans, Spontaneous formation of a water-continuous emulsion from water-in-oil microemulsion. Langmuir 6: 1793–1796 (1990).

    Google Scholar 

  10. P. P. Constantinides and S. H. Yiv. Particle size of phase inverted water-in-oil microemulsions under different dilution and storage conditions. Int. J. Pharm. 115: 225–234 (1995).

    Google Scholar 

  11. P. P. Constantinides, J.P. Scalart, C. Lancaster, J. Marcello, G. Marks, H. Ellens and P. L. Smith. Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharm. Res. 11: 1385–1390 (1994).

    Google Scholar 

  12. P. P. Constantinides, C. M. Lancaster, J. Marcello, D. Chiossone, D. Orner, I. Hidalgo, P. L. Smith, A. B. Sarkahian, S. H. Yiv and A. J. Owen. Enhanced intestinal absorption of an RGD peptide from water-in-oil microemulsions of different composition and particle size. J. Control. Rel. 34: 109–116 (1995).

    Google Scholar 

  13. E. C. Swenson and W. J. Curatolo. Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv. Drug Deliv. Rev. 8: 39–92, (1992).

    Google Scholar 

  14. D. W. Osborne, C. A. Middleton, and R. L. Rogers. Alcoholfree microemulsions. J. Dispersion Sci. Technol. 9: 415–423 (1988).

    Google Scholar 

  15. P. P. Constantinides and J-P. Scalart. Self-emulsifying water-in-oil microemulsions in drug delivery: Formulation and physical characterization. Particul. and Process. Sci. Technol.: An Int. Journal 1(1): in press (1995).

  16. M. Sekine, H. Terashima, K. Sasahara, K. Nishimura, R. Okada and S. Awazu. Improvement of bioavailability of poorly absorbed drugs II. Effect of medium-chain glyceride base on the intestinal absorption of cefmetazole sodium in rats and dogs. J. Pharmacobio-Dyn. 8: 286–295 (1985).

    Google Scholar 

  17. M. Sekine, K. Sasahara, R. Okada and S. Awazu. Improvement of bioavailability of poorly absorbed drugs. IV. Mechanism of the promoting effect of medium-chain glyceride on the rectal absorption of water soluble drugs. J. Pharmacobio-Dyn. 8: 645–652 (1985).

    Google Scholar 

  18. G. Beskid, J. Unowsky, C. R. Behl, J. Siebelist, J. L. Tossounian, C. M. McGarry, N. H. Shah and R. Cleeland. Enteral, oral and rectal absorption of Ceftriaxone using glyceride enhancers. Chemother. 34: 77–84 (1988).

    Google Scholar 

  19. I. Holmberg, L. Aksnes, T. Berlin, B. Lindback, J. Zemgals and B. Lindeke. Absorption of a pharmacological dose of vitamin D3 from two different lipid vehicles in man: comparison of peanut oil and a medium-chain triglyceride. Biopharm. Drug Disposition 11: 807–815 (1990).

    Google Scholar 

  20. K. Shinoda, M. Araki, A. Sadaghiani, A. Khan, and B. Lindman. Lecithin-based microemulsions: Phase behavior and microstructure. J. Phys. Chem. 95: 989–993 (1991)

    Google Scholar 

  21. N. Jezyk, W. Rubans and G. M. Grass. Permeability characteristics of various intestinal regions of rabbit, dog and monkey. Pharm. Res. 9: 1580–1586 (1993).

    Google Scholar 

  22. G. L. Amidon, H. Lennernas, V. P. Shah and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12: 413–420 (1995).

    Google Scholar 

  23. B. Latreille and P. Paquin. Evaluation of emulsion stability by centrifugation and conductivity measurements. J. Food Sci. 55: 1666–1672, (1990).

    Google Scholar 

  24. G. Ktistis. A viscosity study on oil-in-water microemulsions. Int. J. Pharm. 61: 213–218 (1990).

    Google Scholar 

  25. A. M. Cabazat, D. Langevin, and A. Pouchelon. Light scattering study of water-in-oil microemulsions. J. Colloid Interface Sci. 73: 1–11 (1980).

    Google Scholar 

  26. M. Kahlweit, R. Strey, D. Haase, H. Kunieda, T. Schmeling, B. Faulhaber, M. Borkovec, H.-F. Eicke, G. Busse, F. Eggers, T.H. Funck, H. Richmann, L. Magid, O. Soderman, P. Stilbs, J. Winkler, A. Dittrich and W. Jahn. How to study microemulsions. J. Colloid Interface Sci. 118: 436–453 (1987).

    Google Scholar 

  27. Lievens, Hildegard S. R. Pharmaceutical formulations of benzodiazepines. European Patent Application EP 0 517 412 A1, 26 May, 1992.

  28. N. Farah, J. P. Laforet and J. Denis. Self-microemulsifying drug delivery systems for improving dissolution of drugs: in vitro/in vivo evaluation. Pharm. Res. 11: S-202 (1994).

    Google Scholar 

  29. W. A. Ritschel, G. B. Ritschel, A. Sabouni, D. Wolochuk and T. Schroeder. Study on the peroral absorption of the endekapeptide cyclosporin A. Meth. Find. Exp. Clin. Pharmacol. 11: 281–287 (1989).

    Google Scholar 

  30. W. A. Ritschel, S. Adolph, G. B. Ritschel and T. Schroeder. Improvement of peroral absorption of cyclosporin A by microemulsions. Meth. Find. Exp. Clin. Pharmacol. 12: 127–134 (1990)

    Google Scholar 

  31. P. L. Smith, D. A. Wall and G. Wilson. Drug carriers for the oral administration and transport of peptide drugs across the gastrointestinal epithelium. In: A. Rolland (ed). Pharmaceutical Particulate Carriers: Therapeutic Applications. Marcel Dekker, New York, 1993, pp. 109–166.

    Google Scholar 

  32. H. Westergaard and J. M. Dietschy. The uptake of lipids into the intestinal mucosa. In: T.E. Andreoli, J. F. Hoffman, D. D. Fanestil and S. G. Schultz, (eds). Membrane Transport Processes in Organized Systems. Plenum, New York, 1987, pp. 213–224.

    Google Scholar 

  33. D. W. Holt, E. A. Mueller, J. M. Kovarik, J. B. van Bree and K. Kutz. The pharmacokinetics of Sandimmune Neoral: A new oral formulation of cyclosporine. Transplant. Proc. 26: 2935–2939 (1994).

    Google Scholar 

  34. E. A. Mueller, J. M. Kovarik, J. B. van Bree, W. Tetzloff, J. Grevel and K. Kutz. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm. Res. 11: 301–304 (1994).

    Google Scholar 

  35. A. J. Owen, S. H. Yiv and Ani Sarkahian. Convertible microemulsion formulations. PCT Patent Application WO 92/18147, 29 October 1992.

  36. P. P. Constantinides. Water-in-oil microemulsions. PCT Patent Application WO 93/02664, 18 February 1993

  37. P. P. Constantinides and S. H. Yiv. Pharmaceutical emulsion compositions. PCT Patent Application WO 94/08610, 28 April 1994.

  38. Y. W. Cho. Pharmaceutical Compositions. U.S Patent 4, 849, 227, 18 July 1989.

  39. W. A. Ritschel, G. B. Ritschel and G. Sathyan. Insulin drug delivery systems: rectal gels. Res. Commun. Chem. Pathol. Pharmacol. 62: 103–112 (1988).

    Google Scholar 

  40. J. Samanen, F. Ali, T. Romoff, R. Calvo, E. Sorenson, J. Vasko, B. Storer, D. Berry, D. Bennett, M. Strohsacker, D. Powers, J. Stadel and A. Nichols. Development of a small RGD peptide fibrinogen receptor antagonist with potent antiaggregatory activity in vitro. Med. Chem. 34: 3114–3125 (1991).

    Google Scholar 

  41. R. A. Myers and V. J. Stella, Systemic bioavailability of penclomedine (NSC-338720) from oil-in-water emulsions administered intraduodenally to rats. Int. J. Pharm. 78: 217–226 (1992).

    Google Scholar 

  42. T. T. Kararli, T. E. Needham, M. Griffin, G. Schoenhard, L. J. Ferro and L. Alcorn, Oral delivery of a renin inhibitor compound using emulsion formulations. Pharm. Res. 9: 888–893 (1992).

    Google Scholar 

  43. Y. Yamahira, T. Noguchi, H. Takenaka and T. Maeda. Biopharmaceutical studies of lipid-containing oral dosage forms: Relationship between drug absorption and gastric emptying of lipid formulations. J. Pharmacobio Dyn. 1: 160–167 (1978).

    Google Scholar 

  44. S. T. Nielsen, S. H. Yiv, P. Dentinger, A. Dickason and A. Owen. Microemulsion-based drug delivery system: Characterization of pharmacokinetic parameters of calcein absorption in the rat. Pharm. Res. 10: S 293 (1993).

    Google Scholar 

  45. V.H.L. Lee, A. Yamamoto and U. B. Kompella. Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit. Rev. Ther. Drug Carrier Syst. 8: 91–192 (1991).

    Google Scholar 

  46. P.-Y. Yeh, P. L. Smith and H. Ellens. Effect of medium-chain glycerides on physiological properties of rabbitt intestinal epithelium in vitro. Pharm. Res. 11: 1148–1154 (1994).

    Google Scholar 

  47. D. S. Hsieh. Understanding permeation enhancement technologies. In: D. S. Hsieh (ed). Drug permeation enhancement: Theory and applications. Marcel Dekker, New York, 1994, pp. 3–17.

    Google Scholar 

  48. E. S. Swenson, W. B. Milisen and W. Curatolo. Intestinal permeability enhancement: efficacy, acute local toxicity and reversibility. Pharm. Res. 11: 1132–1142 (1994).

    Google Scholar 

  49. N. A. Armstrong and K. C. James. Drug release from lipid-based dosage forms. II. Int. J. Pharm. 6: 195–204 (1980).

    Google Scholar 

  50. M. Ttotta, M. R. Gasco and S. Morel. Release of drugs from oil-in-water microemulsions. J. Control. Rel. 10: 237–243 (1989).

    Google Scholar 

  51. G. A. van Burskirk, V. P. Shah, D. Adair, H. M. Arbit, S. V. Dighe, M. Fawzi, T. Feldman, G. L. Flynn, M. A. Gonzalez, V. A. Gray, R. H. Guy, A. K. Herd, S. L. Hem, C. Hoiberg, R. Jerussi, A. S. Kaplan, L. J. Lesko, H. M. Malinowski, N.M. Meltzer, R. L. Nedich, D. M. Pearce, G. Peck, A. Rudman, D. Savello, J. B. Schwartz, P. Schwartz, J. P. Skelly, R. K. Vanderlaan, J. C. T. Wang, N. Weiner, D. R. Winkel and J. L. Zatz. Workshop III Report: Scale-up of liquid and semisolid disperse systems. Eur. J. Pharm. Biopharm. 40: 251–254 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantinides, P.P. Lipid Microemulsions for Improving Drug Dissolution and Oral Absorption: Physical and Biopharmaceutical Aspects. Pharm Res 12, 1561–1572 (1995). https://doi.org/10.1023/A:1016268311867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016268311867

Navigation