Skip to main content
Log in

The structure and function of CP47 and CP43 in Photosystem II

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This Minireview presents a summary of recent investigations examining the structure and functions of the Photosystem II chlorophyll-proteins CP47 and CP43, updating our previous review which appeared in 1990 (TM Bricker, Photosynth Res 24: 1–13). Since this time, numerous studies have clarified the roles of these chlorophyll-proteins within the photosystem. Biochemical, molecular and structural studies (electron and X-ray diffraction) have demonstrated the close association of these components with the photochemical reaction center of the photosystem and with the extrinsic oxygen evolution enhancer proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akabori K, Tsukamoto H, Tsukihara J, Nagatsuka T, Motokawa O and Toyoshima Y (1988) Disintegration and reconstitution of Photosystem II reaction center core complex. I. Preparation and characterization of three different types of subcomplexes. Biochim Biophys Acta 932: 345-357

    Article  CAS  Google Scholar 

  • Alt J, Morris J, Westhoff P and Herrmann R (1984) Nucleotide sequence for the clustered genes for the 44 kD chlorophyll a apoprotein and the '32 kD-like' protein of the Photosystem II reaction center in the spinach plastid chromosome. Curr Genet 8: 597-606

    Article  CAS  Google Scholar 

  • Anderson LB, Ouellette AJA and Barry BA (2000) Probing the structure of Photosystem II with amines and phenylhydrazine. J Biol Chem 275: 4920-4927

    Article  PubMed  CAS  Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113-134

    Article  PubMed  CAS  Google Scholar 

  • Barbarto R, Race HL, Friso G and Barber J (1991) Chlorophyll levels in the pigment binding proteins of Photosystem II. A study based on chlorophyll to cytochrome ratio in different Photosystem II preparations. FEBS Lett 286: 86-90

    Article  Google Scholar 

  • Berg SP and Seibert M (1987) Is functional manganese involved in hydrogen peroxide stimulated anomalous oxygen evolution in calcium chloride-washed Photosystem II membranes. Photosynth Res 13: 3-17

    Article  CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 743-745

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745-748

    Article  PubMed  CAS  Google Scholar 

  • Boussac A, Sugiura M, Inoue Y and Rutherford AW (2000) EPR study of theoOxygen evolving complex in his-tagged Photosystem II from the cyanobacterium Synechococcus elongatus. Biochemistry 39: 13788-13799

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM (1990) The structure and function of CPa-1 and CPa-2 in Photosystem II. Photosynth Res 24: 1-13

    Article  CAS  Google Scholar 

  • Bricker TM (1992) Oxygen evolution in the absence of the 33 kDa manganese-stabilizing protein. Biochemistry 31: 4623-4628

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM and Frankel LK (1987) Use of a monoclonal antibody in structural investigations of the 49 kDa polypeptide of Photosystem II. Arch Biochem Biophys 256: 295-301

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM and Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of Photosystem II. A critical review. Photosynth Res 56: 157-173

    Article  CAS  Google Scholar 

  • Bricker TM and Ghanotakis DF (1996) Introduction to oxygen evolution and the oxygen-evolving complex In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, Vol 4. Advances in Photosynthesis, pp 113-136. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Bricker TM, Odom WR and Queirolo CB (1988) Close association of the 33 kDa extrinsic protein with the apoprotein of CPa-1 in Photosystem II. FEBS Lett 231: 111-117

    Article  CAS  Google Scholar 

  • Bricker TM, Morvant J, Masri N, Sutton H and Frankel LK (1998) Isolation of a highly active Photosystem II preparation from Synechocystis 6803 using a histidine-tagged mutant of CP 47. Biochim Biophys Acta 1409: 50-57

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Lowrance J, Sutton H and Frankel LK (2001) Alterations of the oxygen-evolving apparatus in a 448Arg?448S mutant in the CP 47 protein of Photosystem II under normal and low chloride conditions. Biochemistry 40: 11483-11489

    Article  PubMed  CAS  Google Scholar 

  • Buchel C, Barber J, Ananyev G, Eshaghi S, Watt R and Dismukes C (1999) Photoassembly of the manganese cluster and oxygen evolution from monomeric and dimeric CP47 reaction center Photosystem II complexes. Proc Natl Acad Sci USA 96: 14288-14293

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Shen J-R, Jursinic PA, Inoue Y and Sherman LA (1992) Oxygen yield and thermoluminescence characteristics of a cyanobacterium lacking the manganese-stabilizing protein of Photosystem II. Biochemistry 31: 7404-7410

    Article  PubMed  CAS  Google Scholar 

  • Burnap R, Troyan T and Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 is encoded by the isiA gene. Plant Physiol 103: 893-902

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Qian M and Pierce C (1996) The manganese-stabilizing protein of Photosystem II modifies the in vivo deactivation and photoactivation kinetics of the H2O oxidation complex in Synechocystis sp. PCC6803. Biochemistry 35: 874-882

    Article  PubMed  CAS  Google Scholar 

  • Chisholm D and Williams JGK (1988) Nucleotide sequence of psbC, the gene encoding CP-43 chlorophyll a-binding protein of Photosystem II, in the cyanobacterium Synechocystis 6803. Plant Mol Biol 10: 293-201

    Article  CAS  Google Scholar 

  • Chu HA, Debus RJ and Babcock GT (2001) D1-Asp170 is structurally coupled to the oxygen evolving complex in Photosystem II as revealed by light-induced Fourier transform infrared difference spectroscopy Biochemistry 40: 2312-2316

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM and Eaton-Rye JJ (1999) Mutation of Phe-363 in the Photosystem II protein CP 47 impairs photoautotrophic growth, alters the chloride requirement, and prevents photosynthesis in the absence of either PS II-O or PS II-V in Synechocystis sp. PCC 6803. Biochemistry 38: 2707-2715

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM and Eaton-Rye JJ (2000) Amino acid deletions in loop C of the chlorophyll a-binding protein CP47 alter the chloride requirement and/or prevent the assembly of Photosystem II. Plant Mol Biol 44: 591-601

    Article  PubMed  CAS  Google Scholar 

  • de Vitry C, Wollmann F-A and Delepelaire P (1984) Function of the polypeptides of the Photosystem II reaction center in Chlamydomonas reinhardtii. Biochim Biophys Acta 767: 415-422

    Article  CAS  Google Scholar 

  • Eaton-Rye JJ and Vermaas WFJ (1991) Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP 47, employing a deletion strain of the cyanobacterium Synechocystis sp PCC 6803. Plant Mol Biol 17: 1165-1177

    Article  PubMed  CAS  Google Scholar 

  • Eaton-Rye J and Vermaas W (1992) Characterization of a histidine to glutamine substitution at residue 469 in CP47 of Photosystem II In: Murata N (ed) Research in Photosynthesis, Vol I, pp 239-242. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Elanskaya IV, Allakhverdiev SI, Boichenko VA, Klimov V, Demeter S, Timofeev KN and Shestakov SV (1994) Photochemical characterization of cyanobacterium Synechocystis sp. PCC 6803 mutants with impaired Photosystem II proteins. Biochemistry (Moscow) 59: 929-934

    Google Scholar 

  • Enami I, Satoh K and Katoh S (1987) Crosslinking between the 33 kDa extrinsic protein and the 47 kDa chlorophyll-carrying protein of the PS II reaction center core complex. FEBS Lett 226: 161-165

    Article  CAS  Google Scholar 

  • Enami I, Kaneko M, Kitamura N, Koike H, Sonoike K, Inoue Y and Katoh S (1991) Total immobilization of the extrinsic 33 kDa protein in spinach Photosystem II membrane preparations. Protein stoichiometry and stabilization of oxygen evolution. Biochim Biophys Acta 1060: 224-232

    Article  CAS  Google Scholar 

  • Enami I, Tohri A, Kamo M, Ohta H and Shen J-R (1997) Identification of domains on the 43 kDa chlorophyll-carrying protein (CP 43) that are shielded from tryptic attack by binding of the extrinsic 33 kDa protein with Photosystem II complex. Biochim Biophys Acta 1320: 17-26

    Article  PubMed  CAS  Google Scholar 

  • Fine PL and Frasch WD (1990) The mechanism of hydrogen peroxide production by the S2 state of the oxygen-evolving complex In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 1, pp 905-908. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Frankel LK and Bricker TM (1989) Epitope mapping of the monoclonal antibody FAC2 on the apoprotein of CPa-1 in Photosystem II. FEBS Lett 257: 279-282

    Article  PubMed  CAS  Google Scholar 

  • Frankel LK and Bricker TM (1990) Mapping of NHS-biotinylation sites and the epitope of the monoclonal antibody FAC2 on the apoprotein of CPa-1. In: Batcheffskey M (ed) Current Research in Photosynthesis, Vol I, pp 825-828. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Frankel LK and Bricker TM (1992) Interaction of CPa-1 with the manganese-stabilizing protein of Photosystem II: identi-fication of domains on CPa-1 which are shielded from Nhydroxysuccinimide biotinylation by the manganese-stabilizing protein. Biochemistry 31: 11059-11063

    Article  PubMed  CAS  Google Scholar 

  • Ghanotakis DF, de Paula JC, Demetriou DM, Bowlby NR, Peterson J, Babcock GT and Yocum CF (1989) Isolation and characterization of the 47 kDa protein and the D1-D2-cytochrome b 559 complex. Biochim Biophys Acta 974: 44-53

    PubMed  CAS  Google Scholar 

  • Giacometti GM, Barbato R, Friso G, Frizzo A and Rigoni F (1992) Photosystem II degradation pathways after photoinhibition of isolated thylakoids. In: Murata N (ed) Research in Photosynthesis, Vol 4, pp 505-508. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Gleiter HM, Haag E, Shen J-RS, Eaton-Rye JJ, Inoue Y and Vermaas WFJ (1994) Functional characterization of mutant strains of the cyanobacterium Synechocystis PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in Photosystem II. Biochemistry 33: 12063-12071

    Article  PubMed  CAS  Google Scholar 

  • Gleiter HM, Haag E, Shen J-R, Eaton-Rye JJ, Seeliger AG, Inoue Y, Vermaas WFJ and Renger G (1995) Involvement of the CP47 protein in stabilization and photoactivation of a functional wateroxidizing complex in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 34: 6847-6856

    Article  PubMed  CAS  Google Scholar 

  • Golden SS and Stearns GW (1988) Nucleotide sequence and transcript analysis of three Photosystem II genes from the cyanobacterium Synechococcus sp. PCC7942. Gene 67: 85-96

    Article  PubMed  CAS  Google Scholar 

  • Guikema J and Sherman LA (1983) Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73: 250-256

    Article  PubMed  CAS  Google Scholar 

  • Haag E, Eaton-Rye JJ, Renger G and Vermaas WFJ (1993) Functionally important domains of the large hydrophilic loop of CP 47 as probed by oligonucleotide-directed mutagenesis in Synechocystis sp. PCC 6803. Biochemistry 32: 4444-4454

    Article  PubMed  CAS  Google Scholar 

  • Hackett CS and Strittmatter P (1984) Covalent crosslinking of the active sites of vesicle-bound cytochrome b5 and NADH cytochrome b 5 reductase. J Biol Chem 259: 3275-3282

    PubMed  CAS  Google Scholar 

  • Hayashi H, Fujimura Y, Mohanty PS and Murata N (1993) The role of CP 47 in the evolution of oxygen and the binding of the extrinsic 33-kDa protein to the core complex of Photosystem II as determined by limited proteolysis. Photosynth Res 36: 35-42

    Article  CAS  Google Scholar 

  • Isogai Y, Yamamoto Y and Nishimura M (1985) Association of the 33 kDa polypeptide with the 43 kDa component in Photosystem II particles. FEBS Lett 187: 240-244

    Article  CAS  Google Scholar 

  • Klimov V, Ananyev G, Zastryzhnaya O and Wydrznski T (1993) Photoproduction of hydrogen peroxide in Photosystem II membrane fragments. Photosynth Res 38: 409-416

    Article  CAS  Google Scholar 

  • Knoepfle N, Bricker TM and Putnam-Evans C (1999) Site-directed mutagenesis of basic arginine residues 305 and 342 in the CP 43 protein of Photosystem II affects oxygen-evolving activity in Synechocystis 6803. Biochemistry 38: 1582-1588

    Article  PubMed  CAS  Google Scholar 

  • Kuhn MG and Vermaas WFJ (1993) Deletion mutations in a long hydrophilic loop in the Photosystem II chlorophyll-binding protein CP43 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 23: 123-133

    Article  PubMed  CAS  Google Scholar 

  • Laudenbach D and Straus NA (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J Bacteriol 170: 5018-5026

    PubMed  CAS  Google Scholar 

  • Leuschner C and Bricker TM (1996) Interaction of the 33 kDa extrinsic protein with Photosystem II: rebinding of the 33 kDa extrinsic protein to Photosystem II membranes which contain four, two, or zero manganese per Photosystem II reaction center. Biochemistry 35: 4551-4557

    Article  PubMed  CAS  Google Scholar 

  • Li Z-L, Bricker TM and Burnap R (2000) Kinetic characterization of His-tagged CP47 Photosystem II in Synechocystis sp. PCC6803. Biochim Biophys Acta 1503: 350-356

    Google Scholar 

  • Lindberg K and Andreasson L-E (1996) A one-site, two-state model for the binding of anions in Photosystem II. Biochemistry 35: 14259-14267

    Article  PubMed  CAS  Google Scholar 

  • Manna P and Vermaas W (1997) Mutational studies on conserved histidine residues in the chlorophyll-binding protein CP43 of Photosystem II. Eur J Biochem 247: 666-672

    Article  PubMed  CAS  Google Scholar 

  • Mano J, Takahashi M and Asada K (1987) Oxygen evolution from hydrogen peroxide in Photosystem II: flash induced catalytic activity of water-oxidizing Photosystem II membranes. Biochemistry 26: 2495-2501

    Article  CAS  Google Scholar 

  • Morgan T, Shand J, Clarke S and Eaton-Rye J (1998) Specific requirements for cytochrome c-550 and the manganese-stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain 351Gly to 436Thr of the chlorophyll binding protein CP47. Biochemistry 37: 14437-14449

    Article  PubMed  CAS  Google Scholar 

  • Mori H and Yamamoto Y (1992) Deletion of antenna chlorophyll-a-binding proteins CP43 and CP47 by tris-treatment of PS II membranes in weak light-evidence for a photo-degradative effect on the PSII components other than the reaction center-binding proteins. Biochim Biophys Acta 1100: 293-298

    CAS  Google Scholar 

  • Mori H, Yamashita YTA and Yamamoto Y (1995) Further characterization of the loss of antenna chlorophyll-binding protein CP43 from Photosystem-II during donor-side photoinhibition. Biochim Biophys Acta 1228: 37-42

    Article  Google Scholar 

  • Noguchi T and Sugiura M (2000) Structure of an active water molecule in the water-oxidizing complex of Photosystem II as studied by FTIR spectroscopy. Biochemistry 39: 10943-10949

    Article  PubMed  CAS  Google Scholar 

  • Odom WR and Bricker TM (1992) Interaction of CPa-1 with the manganese-stabilizing protein of Photosystem II: identification of domains crosslinked by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. Biochemistry 31: 5616-5620

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Yoshida N, Sano M, Hirano M, Nakazato K and Enami I (1995) Evidence for electrostatic interaction of the loop A on CP 47 with the extrinsic 33 kDa protein. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol II, pp 361-364. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Ouellette AJA, Anderson LB and Barry BA (1998) Amine binding and oxidation at the catalytic site for photosynthetic water oxidation. Proc Natl Acad Sci USA 95: 2204-2209

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Dekker JP, Bowlby NR, Ghanotakis DF, Yocum CF and Babcock GT (1990) EPR characterization of the CP47-D1-D2-cytochrome b 559 complex of Photosystem II. Biochemistry 29: 3226-3231

    Article  PubMed  CAS  Google Scholar 

  • Philbrick JB, Diner BA and Zilinskas BA (1991) Construction and characterization of cyanobacterial mutants lacking the manganese-stabilizing protein of Photosystem II. J Biol Chem 266: 13370-13376

    PubMed  CAS  Google Scholar 

  • Prasil O, Adir N and Ohad I (1992) Dynamics of photosystem II: Mechanism of photoinhibition and recovery process. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 295-348. Elsevier, Amsterdam

    Google Scholar 

  • Putnam-Evans C and Bricker TM (1992) Site-directed mutagenesis of the CPa-1 protein of Photosystem II: alteration of the basic residue pair 384,385R to 384,385G leads to a defect associated with the oxygen-evolving complex. Biochemistry 31: 11482-11488

    Article  PubMed  CAS  Google Scholar 

  • Putnam-Evans C and Bricker TM (1994) Site-directed mutagenesis of the CP 47 protein of Photosystem II: alteration of the basic residue 448R to 448G prevents the assembly of functional Photosystem II centers under chloride-limiting conditions. Biochemistry 33: 10770-10776

    Article  PubMed  CAS  Google Scholar 

  • Putnam-Evans C and Bricker TM (1997) Site directed mutagenesis of the basic residues 321K to 321G in the CP 47 protein of Photosystem II alters the chloride requirement for growth and oxygen-evolving activity in Synechocystis 6803. Plant Mol Biol 34: 455-463

    Article  PubMed  CAS  Google Scholar 

  • Putnam-Evans C, Wu J, Burnap R, Whitmarsh J and Bricker TM (1996) Site-directed mutagenesis of the CP 47 protein of Photosystem II: alteration of conserved charged residues in the domain 364E-444R. Biochemistry 35: 4046-4053

    Article  PubMed  CAS  Google Scholar 

  • Qian M, Al-Khaldi S, Putnam-Evans C, Bricker TM and Burnap RL (1997) Photoassembly of the Photosystem II (Mn)4 cluster in site-directed mutants impaired in the binding of the manganesestabilizing protein. Biochemistry 36: 15244-15252

    Article  PubMed  CAS  Google Scholar 

  • Queirolo C (1992) Assemblage of spinach Photosystem II proteins: CPa-1 and MSP interactions. Dissertation, Louisiana State University, Baton Rouge, Louisiana

    Google Scholar 

  • Reifler MJ, Chisholm DA, Wang J, Diner BA and Brudvig GW (1998) Engineering and rapid purification of histidine-tagged Photosystem II from Synechocystis PCC 6803. In: Garab G (ed) Proceedings of the 11th International Congress on Photosynthesis, Vol 2, pp 1189-1192. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Rhee K-H, Morris EP, Barber J and Kuhlbrandt W (1998) Threedimensional structure of Photosystem II reaction center at 8 Å resolution. Nature 396: 283-286

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD, Kuchka M, Mayfield S, Schirmer-Rahire M, Girard-Bascou J and Bennoun P (1989) Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. EMBO J 8: 1013-1021

    PubMed  CAS  Google Scholar 

  • Rogner M, Chisholm DA and Diner B (1991) Site-directed mutagenesis of the psbC gene of Photosystem II: isolation and functional characterization of CP43-less Photosystem II core complexes. Biochemistry 30: 5387-5395

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg C, Christian J, Bricker TM and Putnam-Evans C (1999) Site-directed mutagenesis of glutamate residues in the large extrinsic loop of the Photosystem II protein CP 43 affects oxygen-evolving activity and PS II assembly. Biochemistry 38: 15994-16000

    Article  PubMed  CAS  Google Scholar 

  • Salter AH, Virgin I, Hagman A and Andersson B (1992) On the molecular mechanism of light-induced D1 protein degradation in Photosystem II core particles. Biochemistry 31: 3990-3998

    Article  PubMed  CAS  Google Scholar 

  • Sayre RT and Wrobel-Boerner EA (1994) Molecular topology of the Photosystem II chlorophyll a binding protein, CP43: Topology of a thylakoid membrane protein. Photosynth Res 40: 11-19

    Article  CAS  Google Scholar 

  • Schroeder WP and Aakerlund HE (1990) Hydrogen peroxide production in Photosystem II preparations. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 1, pp 901-904. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Shen G, Boussiba S and Vermaas WFJ (1993a) Synechocystis sp PCC 6803 strains lacking Photosystem I and phycobilisome function. Plant Cell Physiol 5: 1853-1863

    CAS  Google Scholar 

  • Shen G, Eaton-Rye JJ and Vermaas WFJ (1993b) Mutation of histidine residues in CP47 leads to destabilization of the Photosystem II complex and to impairment of light energy transfer. Biochemistry 32: 5109-5115

    Article  PubMed  CAS  Google Scholar 

  • Shen G and Vermaas W (1994) Mutation of chlorophyll ligands in the chlorophyll-binding CP47 protein as studied in a Synechocystis sp. PCC 6803 Photosystem I-less background. Biochemistry 33: 7379-7388

    Article  PubMed  CAS  Google Scholar 

  • Straus NA (1994) Iron deprivation: physiology and gene regulation. In: Bryant DA (ed) Advances in Photosynthesis: Molecular Biology of the Cyanobacteria, Vol 1, pp 731-750 Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Sugiura M and Inoue Y (1999) Highly purified thermo-stable oxygen-evolving Photosystem II core complex from the thermophilic cyanobacterium Synechococcus elongatus having histagged CP43. Plant Cell Physiol 40: 1219-1231

    PubMed  CAS  Google Scholar 

  • Tang X-S and Satoh K (1984) Characterization of a 47-kilodalton chlorophyll-binding polypeptide isolated from a Photosystem II core complex. Plant Cell Physiol 25: 935-945

    CAS  Google Scholar 

  • Tichy M and Vermaas W (1998) Functional analysis of combinational mutants altered in a conserved region in loop E of the CP47 protein in Synechocystis sp. PCC 6803. Biochemistry 37: 1523-1531

    Article  PubMed  CAS  Google Scholar 

  • Tronrud DE, Schmidt MF and Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll-a protein from Prosthecochloris aestuarii refined at 19 Å resolution. J Mol Biol 188: 443-454

    Article  PubMed  CAS  Google Scholar 

  • van Dorssen RJ, Breton J, Plijter JJ, Satoh K and van Gorkom H (1987) Spectroscopic properties of the reaction center and of the 47 kDa protein of Photosystem II. Biochim Biophys Acta 893: 267-274

    Article  CAS  Google Scholar 

  • Vermaas WFJ, Ikeuchi M and Inoue Y (1988) Protein composition of the Photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis PCC 6803. Photosynth Res 17: 97-113

    Article  CAS  Google Scholar 

  • Vermaas WFJ, Williams JGK and Arntzen CJ (1987) Sequencing and modification of psbB, the gene encoding the CP 47 protein of Photosystem II in the cyanobacterium Synechocystis 6803. Plant Mol Biol 8: 317-326

    Article  CAS  Google Scholar 

  • Virgin I, Salter AH, Ghanotakis D F and Andersson B (1991) Lightinduced D1 protein degradation is catalyzed by a serine-type protease. FEBS Lett 287: 125-128

    Article  PubMed  CAS  Google Scholar 

  • Virgin I, Salter AH, Hagman A, Vass I, Styring S and Andersson B (1992) Molecular mechanisms behind light-induced inhibition of Photosystem II electron transport and degradation of reaction center polypeptides. Biochim Biophys Acta 1101: 139-142

    CAS  Google Scholar 

  • Wu J, Masri N, Lee W, Frankel LK and Bricker TM (1999) Random mutagenesis in the large extrinsic loop E and transmembrane ?-helix VI of the CP 47 protein of Photosystem II. Plant Mol Biol 39: 381-386

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Putnam-Evans C and Bricker TM (1996) Site-directed mutagenesis of the CP 47 protein of Photosystem II: 167W in the lumenally exposed loop C is required for Photosystem II assembly and stability. Plant Mol Biol 32: 537-542

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi N, Takahashi Y and Satoh K (1988) Isolation and characterization of a Photosystem II core complex depleted in the 43 kDa chlorophyll binding subunit. Plant Cell Physiol 29: 123-129

    CAS  Google Scholar 

  • Yamamoto Y (2001) Quality control of Photosystem II Plant Cell Physiol 42: 121-128

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y and Akasaka T (1995) Role of an extrinsic 33 kDa protein of Photosystem II in the turnover of the reaction centerbinding protein D1 during photoinhibition. Biochemistry 43: 9038-9045

    Article  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 38 Å resolution. Nature 409: 739-743

    Article  PubMed  CAS  Google Scholar 

  • Zuber H, Brunisholz R and Sidler W (1987) Structure and function of light-harvesting pigment-protein complexes In: Amesz J (ed) Photosynthesis, pp 233-271. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Bricker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bricker, T.M., Frankel, L.K. The structure and function of CP47 and CP43 in Photosystem II. Photosynthesis Research 72, 131–146 (2002). https://doi.org/10.1023/A:1016128715865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016128715865

Navigation