Skip to main content
Log in

Microbiological Characteristics in a Zero-Valent Iron Reactive Barrier

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Zero-valent iron (Fe0)-based permeable reactive barriertreatment has been generating great interest for passivegroundwater remediation, yet few studies have paid particularattention to the microbial activity and characteristics withinand in the vicinity of the Fe0-barrier matrix. The presentstudy was undertaken to evaluate the microbial population andcommunity composition in the reducing zone of influence byFe0 corrosion in the barrier at the Oak Ridge Y-12 Plantsite. Both phospholipid fatty acids and DNA analyses were usedto determine the total microbial population and microbialfunctional groups, including sulfate-reducing bacteria,denitrifying bacteria, and methanogens, in groundwater andsoil/iron core samples. A diverse microbial community wasidentified in the strongly reducing Fe0 environment despitea relatively high pH condition within the Fe0 barrier (up topH ∼ 10). In comparison with those found in the backgroundsoil/groundwater samples, the enhanced microbial populationranged from ∼ 1 to 3 orders of magnitude and appeared to increase from upgradient of the barrier to downgradient soil. Inaddition, microbial community composition appeared to change overtime, and the bacterial types of microorganismsincreased consistently as the barrier aged. DNA analysisindicated the presence of sulfate-reducing and denitrifyingbacteria in the barrier and its surrounding soil. However, theactivity of methanogens was found to be relatively low,presumably as a result of the competition by sulfate/metal-reducing bacteria and denitrifying bacteria because of the unlimited availability of sulfate and nitrate in the site groundwater. Results of this study provide evidenceof a diverse microbial population within and in the vicinity ofthe iron barrier, although the important roles of microbial activity, either beneficially or detrimentally, on the longevityand enduring efficiency of the Fe0 barriers are yet to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen-King, R. M., Burris, D. R. and Specht, J. A.: 1997, 'Effect of Iron 'Aging' on Reduction Kinetics in a Batch Metallic IronWater System', 213th ACS National Meetings, American Chemical Society, San Francisco, CA, Preprint Extended Abstract, Vol. 37(1), pp. 147–149.

    Google Scholar 

  • Balkwill, D. L., Leach, F. R., Wilson, J. T., McNabb, J. F. and White, D. C.: 1988, 'Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments', Microbioal. Ecol. 16, 73–84.

    Google Scholar 

  • Blowes, D. W., Ptacek, C. J. and Jambor, J. L.: 1997, 'In-situ remediation of Cr(VI)-contaminated gruondwater using permeable reactive walls: laboratory studies', Environ. Sci. Technol. 31(12), 3348–3357.

    Google Scholar 

  • Braker, G., Zhou, J., Wu, L., Devol, A. H. and Tiedje, J. M.: 2000, 'Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities', Appl. Environ. Microbiol. 66, 2096–2104.

    Google Scholar 

  • Clark, D.: 2000, RTDF web site: www.rtdf.org

  • Dowling, J. E., Widdel, F. and White, D. C.: 1986, 'Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide-forming bacteria', J. Gen. Microbiol. 132, 1815–1825.

    Google Scholar 

  • Duwart, R.: 2000, RTDF web site: www.rtdf.org

  • Ehrlich, H. L.: 1990, Geomicrobiology, Marcel Dekker.

  • Gu, B., Watson, D. B., Phillips, D. H. and Liang, L.: 2002, 'Biogeochemical, Mineralogical, and Hydrological Characteristics of an Iron Reactive Barrier used for Treatment of Uranium and Nitrate', in D. L. Naftz, S. J. Morrison, J. A. Davis and C. C. Fuller (eds), Groundwater Remediation of Trace Metals, Radionuclides, and Nutrients, with Permeable Reactive Barriers, Academic Press, New York.

    Google Scholar 

  • Gu, B., Phelps, T. J., Liang, L., Dickey, M. J., Roh, Y., Kinsall, B. L., Palumbo, A. V. and Jacobs, G. K.: 1999, 'Biogeochemical dynamics in zero-valent iron columns: Implications for permeable reactive barriers', Environ. Sci. Technol. 33, 2170–2177.

    Google Scholar 

  • Guckert, J. B., Hood, M. A. and White, D. C.: 1986, 'Phospholipid, ester-linked fatty acid profile changes during nutrient deprivation of Vibrio Cholerae: Increases in the trans/cis ratio and productions of cyclopropyl fatty acids', Appl. Environ. Microbiol. 52, 794–801.

    Google Scholar 

  • Huang, C. P., Wang, H. W. and Chiu, P. C.: 1998, 'Nitrate reduction by metallic iron', Water Res. 32(8), 2257–2262.

    Google Scholar 

  • Karkhoff-Schweizer, R. R., Huber, D. P. and Voordouw, G.: 1995, 'Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their Detection by PCR', Appl. Environ. Microbiol. 61, 290–296.

    Google Scholar 

  • Liang, L., Korte, N., Gu, B., Puls, R. and Reeter, C.: 2000, 'Geochemical and microbiological reactions affecting the long-term performance of in situ iron barriers', Adv. Environ. Res. 4, 273–286.

    Google Scholar 

  • Liang, L., West, O. R., Korte, N. E., Goodlaxson, J. D., Pickering, D. A., Zutman, J. L., Anderson, F. J., Welch, C. A., Pelfrey, M. J. and Dickey, M. J.: 1997, ORNL/TM-13217, Oak Ridge National Laboratory.

  • Lipczynska-Kochany, E., Harms, S. and Nadarajah, N.: 1994, 'Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds', Chemosphere 29(7), 1477–1489.

    Google Scholar 

  • Lovley, D. R. and Goodwin, S.: 1988, 'Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments', Geochim. Cosmochim. Acta 52, 2993–3003.

    Google Scholar 

  • Matheson, L. J. and Tratnyek, P. G.: 1994, 'Reductive dehalogenation of chlorinated methanes by iron metal', Environ. Sci. Technol. 28, 2045–2053.

    Google Scholar 

  • Novak, P. J., Daniels, L. and Parkin, G. F.: 1998, 'Enhanced dechlorination of carbon tetrachloride and chloroform in the presence of elemental iron and methanosarina barkeri, methanosarina thermophila, or methanosaeta concillii', Environ. Sci. Technol. 32, 1438–1443.

    Google Scholar 

  • O'Hannesin, S. F. and Gillham, R. W.: 1998, 'Long-term performance of an in situ 'Iron Wall' for remediation of VOCs', Groundwater 36, 164–172.

    Google Scholar 

  • Phillips, D. H., Gu, B., Watson, D. B., Roh, Y., Liang L. and Lee, S. Y.: 2000, 'Performance evaluation of a zero-valent iron reactive barrier: mineralogical characteristics', Environ. Sci. Technol. 34, 4169–4176.

    Google Scholar 

  • Puls, R.W., Paul, C. J. and Powell, R. M.: 1999, 'The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test', Appl. Geochem. 14, 989–1000.

    Google Scholar 

  • Ringelberg, D. B., Davis, J. D., Smith, G. A., Pfiffner, S. M., Nichols, P. D., Nickels, J. B., Hensen, J. M., Wilson, J. T., Yates, M., Kampbell, D. H., Reed, H.W., Stocksdale, T. T. and White, D. C.: 1988, FEMS Microbial Ecol. 62, 39–50.

    Google Scholar 

  • Scherer, M. M., Richter, S., Valentine, R. L. and Alvarez, P. J.: 2000, 'Chemistry and microbiology of permeable reactive barriers for in situ groundwaer cleanup', Crit. Rev. Environ. Sci. Technol. 30(3), 363–411.

    Google Scholar 

  • Springer, E., Sachs, M. S., Woese, C. R. and Boone, D. R.: 1995, 'Partial gene-sequences for the a-subunit of methyl-coenzyme-M reductase (MCRI) as a phylogenetic tool for the family methanosarcinaceae', Int. J. Syst. Bact. 45, 0554–0559.

    Google Scholar 

  • Taylor, S.W. and Jaffe, P. R.: 1990, 'Biofilm growth and the related changes in the physical propertis of a porous medium - 1. Experimental investigation', Water Res. Res. 26(9), 2153–2159.

    Google Scholar 

  • Till, B. A., Weathers, L. J. and Alvarez, P. J.: 1998, 'Fe(0)-supported autotrophic denitrification', Environ. Sci. Technol. 32(5), 634–639.

    Google Scholar 

  • Tratnyek, P. G., Johnson, T. L., Scherer, M.M. and Eykholt, G. R.: 1997, 'Remediating ground water with zero-valent metals: Chemical considerations in barrier design', GWMR 17, 108–114.

    Google Scholar 

  • Tunlid, A. and White, D. C.: 1991, 'Biochemical analysis of Biomass, Community Structure, Nutritional Status and Metabolic Activity of the Microbial Communities in Soil', in J. M. Bollag and G. Stotzky (eds), Soil Biochemistry, Vol. 7, pp. 229–262.

  • Watson, D., Gu, B., Phillips, D. H. and Lee, S. Y.: 1999, 'Evaluation of Permeable Reactive Barriers for Removal of Uranium and other Inorganics at the Department of Energy Y-12 Plant, S-3 Disposal Ponds', ORNL/TM-1999/143, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Weathers, L. J., Parkin, G. F. and Alvarez, P. J.: 1997, 'Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture', Environ. Sci. Technol. 31(3), 880–885.

    Google Scholar 

  • Zhou, J. Z., Bruns, M. A. and Tiedje, J.M.: 1996, 'DNA recovery from soils of diverse composition', Appl. Environ. Microbiol. 62, 461–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, B., Watson, D.B., Wu, L. et al. Microbiological Characteristics in a Zero-Valent Iron Reactive Barrier. Environ Monit Assess 77, 293–309 (2002). https://doi.org/10.1023/A:1016092808563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016092808563

Navigation