Skip to main content
Log in

Macromolecular Carrier Systems for Targeted Drug Delivery: Pharmacokinetic Considerations on Biodistribution

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

This review article describes the current status and future perspectives of site-specific drug delivery by means of macromolecular carrier systems. Basic aspects and recent advances of targeted delivery of 1) conventional drugs, 2) protein drugs, and 3) gene medicines including antisense oligonucleotides and plasmid DNA, are reviewed from a pharmacokintic perspective. Successful in vivo application of macromolecular carrier systems requires pharmacokinetic considerations at whole body, organ, cellular and subcellular levels. The integration of simultaneous research progress in the multidisciplinary fields such as biochemistry, cell and molecular biology, pharmacology, and pharmacokinetics will accelerate the emergence of marketed drugs with macromolecular carrier systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Sezaki and M. Hashida. Macromolecule-drug conjugates in targeted cancer chemotherapy. CRC Crit. Rev. Ther. Drug Carrier Syst. 1:1–38 (1984).

    Google Scholar 

  2. H. Sezaki, Y. Takakura and M. Hashida. Soluble macromolecular carriers for the delivery of antitumor drugs. Adv. Drug Delivery Rev. 3:247–266 (1989).

    Google Scholar 

  3. Y. Takakura and M. Hashida. Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Crit. Rev. Oncol. Hematol. 18:207–231 (1995).

    Google Scholar 

  4. V. H. L. Lee, M. Hashida and Y. Mizushima (eds.), Trends and Future Perspectives in Peptide and Protein Drug Delivery. Harwood Academic Publishers, Chur, Swizerland, 1995.

    Google Scholar 

  5. J. A. Wolff (ed.), Gene Therapeutics: Methods and Applications of Directed Gene Transfer, Birkhauser, Boston, 1994.

    Google Scholar 

  6. S. T. Crooke and B. Lebleu (eds.), Antisense Research and Applications, CRC Press, Boca Raton, 1993.

    Google Scholar 

  7. V.J. Stella and A. S. Kearney. Pharmacokinetics of drug targeting: Specific implications for targeting via prodrugs. In R.L. Juliano (ed.), Targeted Drug Delivery (Handbook of Experimental Pharmacology vol. 100), Springer-Verlag, Berlin Heidelberg, 1991, pp. 71–103.

    Google Scholar 

  8. T. R. Tritton. Cell surface actions of adriamycin. Pharmacol. Ther. 49:293–309 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. F. Fuertges and A. Abuchowski. The clinical efficacy of poly(ethylene glycol)-modified proteins. J. Controlled Release 11:139–148 (1990).

    Google Scholar 

  10. N. V. Katre. The conjugation of proteins with polyethylene glycol and other polymers: Altering properties of proteins to enhance their therapeutic potential. Adv. Drug Delivey Rev. 10:91–114 (1993).

    Google Scholar 

  11. J.-P. Leonetti and L. D. Leserman. Targeted delivery of oligonucleotides. In S. T. Crooke and B. Lebleu (eds.), Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 493–504.

    Google Scholar 

  12. J. C. Perales, T. Ferkol, M. Molas and R. W. Hanson. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur. J. Blochem. 226:255–266 (1994).

    Google Scholar 

  13. E. Timlinson. Microsphere delivery systems for drug targeting and controlled release. Int. J. Pharm. Tech. Prod. Mfr. 4:49–57 (1983).

    Google Scholar 

  14. K. J. Widder, A. E. Senyei and D. F. Ranney. Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv. Pharmacol. Chemother. 16:213–271 (1977).

    Google Scholar 

  15. A. E. Taylor and D. N. Granger. Exchange of macromolecules across the microcirculation. In E. M. Renkin and C. C. Michel (eds.), Handbook of Physiology: The Cardiovascular System IV., American Physiological Society, Bethesda, 1984, pp. 467–520.

    Google Scholar 

  16. W. M. Pardridge (ed.), The Blood-Brain Barrier: Cellular and Molecular Biology, Raven Press, New York, 1993.

    Google Scholar 

  17. E. Wisse and A. M. De Leeuw. Structural elements determining transport and exchange processes in the liver. In S. S. Davis, L. Illum, J. G. McVie and E. Tomlinson (eds.), Microspheres and Drug Therapy: Pharmaceutical, Immunological and Medical Aspects. Elsevier Science Publishers B.V., Amsterdam, 1984, pp. 1–23.

    Google Scholar 

  18. H. Maeda and Y. Matsumura. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit. Rev. Ther. Drug Carrier Syst. 6:193–210. (1989).

    Google Scholar 

  19. Y. Takakura, M. Hashida and H. Sezaki. Lymphatic transport after parenteral drug administartion. In W.N. Charman and V.J. Stella (eds.), Lymphatic Transport of Drugs, CRC Press, Boca Taton, 1992, pp. 255–277.

    Google Scholar 

  20. K. Nishida, K. Mihara, T. Takino, S. Nakane, Y. Takakura, M. Hashida and H, Sezaki. Hepatic disposition characteristics of electrically charged macromolecules in rat in vivo and in the perfused liver. Pharm. Res. 8:437–444 (1991).

    Google Scholar 

  21. Y. Takakura, T. Fujita, H. Furitsu, M. Nishikawa, H. Sezaki and M. Hashida. Pharmacokinetics of succinylated proteins and dextran sulfate in mice: implications for hepatic targeting of protein drugs by direct succinylation via scavenger receptors. Int. J. Pharmaceut. 105:19–29 (1994).

    Google Scholar 

  22. K. Kawabata, Y. Takakura and M. Hashida. The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm. Res. 12:825–830 (1995).

    Google Scholar 

  23. Y. Takakura, A. Takagi, M. Hashida and H. Sezaki. Disposition and tumor localization of mitomycin C-dextran conjugates in mice. Pharm. Res. 4:293–300 (1987).

    Google Scholar 

  24. Y. Takakura, T. Fujita, M. Hashida and H. Sezaki. Disposition characteristics of macromolecules in tumor-bearing mice. Pharm. Res. 7:339–346 (1990).

    Google Scholar 

  25. T. Miyao, Y. Takakura, T. Akiyama, F. Yoneda, H. Sezaki and M. Hashida. Stability and pharmacokinetic characteristics of oligonucleotides modified at terminal linkages in mice. Antisense Res. Develop. 5:115–121 (1995).

    Google Scholar 

  26. A. Takagi, H. Masuda, Y. Takakura and M. Hashida. Disposition characteristics of recombinant human interleukin-11 after a bolus intravenous administration in mice J. Pharmacol. Exp. Ther. 275:537–543 (1995).

    Google Scholar 

  27. Y. Takakura, K. Mihara and M. Hashida. Control of the disposition profiles of proteins in the kidney via chemical modification. J. Controlled Release 28:111–119 (1994).

    Google Scholar 

  28. P. D. Senter, P. M. Wallace, H. P. Svensson, V. M. Vrudhuna, D. E. Kerr, I. Hellstorm and K. E. Hellstorm. Generation of cytotoxic agents by targeted enzymes. Bioconjugate Chem. 4:3–9 (1993).

    Google Scholar 

  29. A. Trouet, D. D.-D. Campeneere and C. De Duve. Chemotherapy through lysosomes with a DNA-daunorubicin complex. Nature 239:110–112 (1972).

    Google Scholar 

  30. L. W. Seymour. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit. Rev. Ther. Drug Carrier Syst. 9:135–187 (1992).

    Google Scholar 

  31. F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin and R. K. Jain. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55:3752–3756 (1995).

    Google Scholar 

  32. A. Noguchi, T. Takahashi, T. Yamaguchi, K. Kitamura, Y. Takakura, M. Hashida and H. Sezaki. Tumor localization and in vivo antitumor activity of the immunoconjugate composed of antihuman colon cancer monoclonal antibody and mitomycin C-dextran conjugate. Jpn. J. Cancer Res. 82:219–226 (1990).

    Google Scholar 

  33. C. Sung, R. J. Youle and R. L. Dedrick. Pharmacokinetic analysis of immunotoxin uptake in solid tumors: role of plasma kinetics, capillary permeability, and binding. Cancer Res. 50:7382–7392 (1990).

    Google Scholar 

  34. T. Fujita, M. Nishikawa, C. Tamaki, Y. Takakura, M. Hashida and H. Sezaki. Targeted delivery of human superoxide dismutase by chemical modification with mono-and polysaccharide derivatives. J. Pharmacol. Exp. Ther. 263:971–978 (1992).

    Google Scholar 

  35. U. Bickel, T. Yoshikawa and W. M. Pardridge. Delivery of peptides and proteins through the blood-brain barrier. Adv. Drug Delivery Rev. 10:205–245 (1993).

    Google Scholar 

  36. K. Mihara, Y. Oka, K. Sawai, Y. Takakura and M. Hashida. Improvement of therapeutic effect of human recombinant superoxide dismutase on ischemic acute renal failure in the rat via cationization and conjugation with polyethylene glycol. J. Drug Targeting 2:317–321 (1994).

    Google Scholar 

  37. E. J. F. Franssen, F. Moolenaar, D. d. Zeeuwand D. K. F. Meijer. Drug targeting to the kidney with low-molecular-weight proteins. Adv. Drug Delivery Rev. 14:67–88 (1994).

    Google Scholar 

  38. B. L. Ferraiolo, R. J. Wills and M. A. Mohler. Biotechnology products. In P. G. Welling and L. P. Balant (eds.), Pharmacokinetics of Drugs (Handbook of Experimental Pharmacology vol. 110), Springer-Verlag, Berlin Heidelberg, 1991, pp. 355–370.

    Google Scholar 

  39. Y. Sugiyama and M. Hanano. Receptor-meditaed transport of peptide hormones and its importance in the over all hormone disposition in the body. Pharm. Res. 6:192–202 (1989).

    Google Scholar 

  40. M. Inoue, I. Ebashi, N. Watanabe and Y. Morino. Synthesis of a superoxide dismutase derivative that circulates bound to albumin and accumulates in tissues whose pH is decreased. Biochemistry 28:6619–6624 (1989).

    Google Scholar 

  41. L. Fiume, C. Busi, G. Stefano and A. Mattioli. Targeting of antiviral drugs to the liver using glycoprotein carriers. Adv. Drug Delivery Rev. 14:51–65 (1994).

    Google Scholar 

  42. M. Nishikawa, A. Kamijo, T. Fujita, Y. Takakura, H. Sezaki and M. Hashida. Synthesis and pharmacokinetics of a new liver-specific carrier, glycosylated carboxymethyl-dextran, and its application to drug targeting. Pharm. Res. 10:1253–1261 (1993).

    Google Scholar 

  43. M. Hashida, H. Hirabayashi, M. Nishikawa and Y. Takakura. Targeted delivery of drugs and proteins to the liver via receptor-mediated endocytosis. J. Controlled Release, submitted.

  44. L. W. Seymour, K. Ulbrich, S. R. Wedge, I. C. Hume, J. Strohalm and R. Duncan. N-(2-hydroxypropyl)methacrylamide copolymers targeted to the hepatocytes galactose-receptor: pharmacokinetics in DBA2 mice. Br. J. Cancer 63:859–866 (1991).

    Google Scholar 

  45. T. Fujita, H. Furitsu, M. Nishikawa, Y. Takakura, H. Sezaki, and M. Hashida. Therapeutic effects of superoxide dismutase derivatives modified with mono-and polysaccharides on hepatic injury induced by ischemia/reperfusion. Biochem. Biophys. Res. Commun. 189:191–196 (1992).

    Google Scholar 

  46. J. Frese, Jr., C. H. Wu and G. Y. Wu. Targeting of genes to the liver with glycoprotein carriers. Adv. Drug Delivery Rev. 14:137–152 (1994).

    Google Scholar 

  47. J. C. Perales, T. Ferkol, H. Beegen and O. D. Ratnoff. Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. USA 91:4086–4090. (1994).

    Google Scholar 

  48. J. Chen, R. J. Stickles, and K. A. Daichendt. Galactosylated histone-mediated gene transfer and expression. Human Gene Therapy 5:429–435. (1994).

    Google Scholar 

  49. M. Monsigny, A.-C. Roche, P. Midoux and R. Mayer. Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes. Adv. Drug Delivery Rev. 14:1–24 (1994).

    Google Scholar 

  50. Y. Takakura, S. Masuda, H. Tokuda, M. Nishikawa, and M. Hashida. Targeted delivery of superoxide dismutase to macrophages via mannose receptor-mediated mechanism. Biochem. Pharmacol. 47:853–858 (1994).

    Google Scholar 

  51. A. Mukhopadhyay, B. Mukhopadhyay, and S. K. Basu. Enhancement of tumoricidal activity of daunomycin by receptor-mediated delivery: In vivo studies. Biochem. Pharmacol. 46:919–924 (1993).

    Google Scholar 

  52. E. Wagner, D. Curiel and M. Cotten. Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis. Adv. Drug Delivery Rev. 14:113–135 (1994).

    Google Scholar 

  53. G. Citro, C. Szczylik, P. Ginpbbi, G. Zupi and B. Calabretta. Inhibition of leukaemia cell proliferation by folic acid-polylysine-mediated introduction of c-myb antisense oligodeoxynucleotides into HL-60 cells. Br. J. Cancer 69:463–467 (1994).

    Google Scholar 

  54. J. J. Turek, C. P. Leamon and P. S. Low. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J. Cell Sci. 106:423–430 (1993).

    Google Scholar 

  55. G. Y. Wu, P. Zhan, L. L. Sze, A. R. Rosenberg and C. H. Wu. Incorporation of adenovirus into a ligand-based DNA carrier system results in retention of original receptor specificity and enhances targeted gene expression. J. Biol. Chem. 269:11542–11546 (1994).

    Google Scholar 

  56. M. Nishikawa, H. Hirabayashi, Y. Takakura and M. Hashida. Design for cell-specific targeting of proteins utilizing sugar-recognition mechanism: effect of molecular weight of proteins on targeting efficiency. Pharm. Res. 12:209–214 (1995).

    Google Scholar 

  57. M. Nishikawa, C. Miyazaki, F. Yamashita, Y. Takakura and M. Hashida. Galactosylated proteins are recognized by the liver according to the surface density of galactose moieties. Am. J. Physiol. 268:G849–G856 (1995).

    Google Scholar 

  58. Y. C. Lee, C. P. Stowell and M. K. Krantz. 2-imino-2-methoxyethyl 1-thioglycosides: New reagents for attaching sugars to proteins. Biochemistry 15:3956–3963 (1976).

    Google Scholar 

  59. R. W. Jansen, G. Molema, T. L. Ching, R. Oosting, G. Harms, F. Moolenaar, M. J. Hardonk and D. K. F. Meijer. Hepatic endocytosis of various types of mannose-terminated albumins: What is important, sugar recognition, net charge of the combination of these features. J. Biol. Chem. 266:3343–3348 (1991).

    Google Scholar 

  60. F. J. Burrowsand P. E. Thorpe. Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol. Ther. 64:155–174 (1994).

    Google Scholar 

  61. A. L. Epstein, L. A. Khawli, J. L. Hornickand and C. R. Taylor. Identification of a monoclonal antibody, TV-1, directed against the basement membrane of tumor vessels, and its use to enhance the delivery of macromolecules to tumors after conjugation with interleukin 2. Cancer Res. 55:2673–2680 (1995).

    Google Scholar 

  62. W. M. Pardridge. Vector-mediated peptide drug delivery to the brain. Adv. Drug Delivey Rev. 15:109–146 (1995).

    Google Scholar 

  63. T. Ferkol, C. S. Kaetzel and P. B. Davis. Gene transfer into respiratory epithelial cells by targeting the polymeric immunoglobulin receptor. J. Clin. Invest. 92:2394–2400 (1993).

    Google Scholar 

  64. J. Chen, S. Gamou, A. Takayanagi and N. Shimizu. A novel gene delivery system using EGF receptor-mediated endocytosis. FEBS Lett. 338:167–169 (1994).

    Google Scholar 

  65. M. Buschle, M. Cotten, H. Kirlappos, K. Mechtler, G. Schaffner, W. Zauner, M. L. Birnstiel and E. Wagner. Receptor-mediated gene trasfer into human T lymphocytes via binding of DNA/CD3 antibody particles to the CD3 T cell receptor complex. Human Gene Therapy 6:753–761 (1995).

    Google Scholar 

  66. T. Takahashi, T. Yamaguchi, K. Kitamura, A. Noguchi, M. Honda and E. Otsuji. Follow-up study of patients treated with monoclonal antibody-drug conjugate: Report of 77 cases with colorectal cancer. Jpn. J. Cancer Res. 84:976–981 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takakura, Y., Hashida, M. Macromolecular Carrier Systems for Targeted Drug Delivery: Pharmacokinetic Considerations on Biodistribution. Pharm Res 13, 820–831 (1996). https://doi.org/10.1023/A:1016084508097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016084508097

Navigation