Skip to main content
Log in

Formulation and Antitumor Activity Evaluation of Nanocrystalline Suspensions of Poorly Soluble Anticancer Drugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Determine if wet milling technology could be used to formulate water insoluble antitumor agents as stabilized nanocrystalline drug suspensions that retain biological effectiveness following intravenous injection.

Methods. The versatility of the approach is demonstrated by evaluation of four poorly water soluble chemotherapeutic agents that exhibit diverse chemistries and mechanisms of action. The compounds selected were: piposulfan (alkylating agent), etoposide (topoisomerase II inhibitor), camptothecin (topoisomerase I inhibitor) and paclitaxel (antimitotic agent). The agents were wet milled as a 2% w/v solids suspension containing 1 % w/v surfactant stabilizer using a low energy ball mill. The size , physical stability and efficacy of the nanocrystalline suspensions were evaluated.

Results. The data show the feasibility of formulating poorly water soluble anticancer agents as physically stable aqueous nanocrystalline suspensions. The suspensions are physically stable and efficacious following intravenous injection.

Conclusions. Wet milling technology is a feasible approach for formulating poorly water soluble chemotherapeutic agents that may offer a number of advantages over a more classical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. R. Robinson. Recent advances in formulation of poorly absorbed drugs. In: Current Status on Targeted Drug Delivery to the gastrointestinal tract, pp. 59–63. Capsugel Library, (1993).

  2. J. G. Nairn. Solutions, Emulsions, Suspensions and Extracts. In: A. R. Gennaro (ed.), Remington's Pharmaceutical Sciences, pp.1519–1544. Easton: Mack Publishing Co. (1990).

    Google Scholar 

  3. L. M. Slevin. The clinical pharmacology of etoposide. Cancer, 67:319–329 (1993).

    Google Scholar 

  4. P. Rubin (ed.) Clinical Oncology. Philadelphia: W. B. Saunders (1993).

    Google Scholar 

  5. D. J. O'Dwyer and R. B. Weiss. Hypersensitivity reactions induced by etoposide. Cancer Res, 68:959–961 (1984).

    Google Scholar 

  6. J. M. Bennett, G. H. Lymann, P. A. Cassileth, J. H. Glick, M. M. Okem. A phase II trial of VP-16213 in adults with acute myeloid Leukemia. Am. J. Clinic. Oncol. Cancer Clinical Trials, 7:471–473 (1984).

    Google Scholar 

  7. M. M. Hudson, H. J. Weinstein, S. S. Donaldson, C. Greenwald, L. Kun, N. J. Tarbell, W. A. Humphrey, C. Rupp, N. M. Marina, J. Wilimas, M. P. Link. Acute hypersensitivity reactions to etoposide in a VEPA regimen for Hodgkin's disease. J. Clin. Oncol., 11:1080–1084 (1993).

    Google Scholar 

  8. T. M. Allen. Long circulating (sterically stabilized) liposomes for targeted drug delivery. TIPS, 15:215–220 (1994).

    Google Scholar 

  9. D. Lasic. Applications of liposomes in pharmacology and medicine. In: Liposomes from physics to applications, pp. 262–471. Amsterdam: Elsevier Press (1993).

    Google Scholar 

  10. S. S. Davis, C. Washington, P. West, L. Illum, G. G. Liversidge, L. Sternson, R. Kirsh. Lipid emulsions as drug delivery systems. Ann N.Y. Acad. Sci. 507:76–78 (1987b).

    Google Scholar 

  11. B. Sjostrom, B. Bergenstahl, B. Kronberg. A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in-water emulsions. II: Influence of the emulsifier, the solvent, and the drug substance. J. Pharm. Sci. 82:584–589 (1993).

    Google Scholar 

  12. P. Couvreur, L. Roblot-Treupel, M. F. Poupon, F. Brasseur, F. Puisieux. Nanoparticles as microcarriers for anticancer drugs. Adv. Drug Delivery Rev., 5:209–230 (1990).

    Google Scholar 

  13. R. H. Muller. In: Colloidal carriers for controlled drug delivery and targeting. Stuttgart: Wissenschaftliche (1991).

    Google Scholar 

  14. G. G. Liversidge and K. C. Cundy. Particle size reduction for improvement of oral bioavailability of hyrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J. Pharm (1995, in press).

  15. N. Kondo, T. Iwao, H. Masuda, K. Yamamouchi, Y. Ishihara, N. Yamada, T. Haga, Y. Ogawa, K. Yokoyama. Improved Oral Absorption of a Poorly Water-Soluble Drug, HO-221, by Wet-Bead Milling Producing Particles in Submicron Region. Chem. Pharm. Bull. 41:737–740 (1993).

    Google Scholar 

  16. T. H. Corbett, D. P. Griswold, B. J. Roberts, J. C. Peckham, F. M. Schable. Biology and therapeutic response of a mouse mammary adenocarcinoma (16/C) and its potential as a model for surgical adjuvant chemotherapy. Cancer Treat. Reports, 62:1471–1488 (1978).

    Google Scholar 

  17. J. L. Grem, K. D. Tutsch, K. J. Simon, D. B. Alberti, J. K. V. Wilson, D. C. Tormey. Phase I study of taxolol administered as a short i.v. infusion daily for 5 days. Cancer Treat. Rep. 71:1179–1184 (1987).

    Google Scholar 

  18. J. Koeller, T. Brown, K. Havlin, J. Craig, D. D. Von Hoff. A phase I study of taxol given as a 6 hour infusion every 21 days. Invest. New Drug 7:451(1989).

    Google Scholar 

  19. D. M. Peereboom, R. C. Donehower, E. A. Eisenhauer, W. P. McGuire, W. P., N. Onetto, J. L. Hubbard. Successful re-treatment with taxol after hypersensitivity reactions. J. Clin. Oncol., 11:885–890 (1993).

    Google Scholar 

  20. N. A. Nelson, R. W. Talley, M. L. Reed, A. M. Evans, B. L. Isaacs, P. Huffman, J. Lousi. Midwest cooperative group evaluation of piposulfan (A-20968) in cancer. Cancer Clin. Pharm. Ther. 8:385–391 (1967).

    Google Scholar 

  21. J. J. Van Dyk, G. Falkson, H. C. Falkson. Clinical experience with 1,4-dihyracryloylpiperazine dimethanesulfonate (NSC-47774). Cancer Chem. Rep. 52:275–286 (1968).

    Google Scholar 

  22. F. M. Muggia, P. J. Creavan, H. H. Hansen, M. H. Cohen, H., O. S. Selawry. Phase I clinical trial of weekly and daily treatment with camptothecin (NSC-100880): Correlation with Preclinical Studies. Cancer Chem. Rep. 56:515–521 (1972).

    Google Scholar 

  23. W. J. Slichenmyer, E. K. Rowinsky, R. C. Donehower, S. H. Kaufmann. The current status of camptothecin analogues as antitumor agents. J. Natl. Cancer Inst. 85:271–291(1993).

    Google Scholar 

  24. K. C. Nicolau, C. Reimer, M. A. Kerr, D. Rideout, W. Wrasidio. Design, synthesis, and biological activity of protaxols. Nature 364:464–466 (1993).

    Google Scholar 

  25. I. A. Darwish, A. T. Florence, A. M. Saleh. Effects of hydrotropic agents on the solubility, precipitation and protein binding of etoposide. J. Pharm. Sci. 78:577–588 (1989).

    Google Scholar 

  26. G. Borchard, J. Kreuter. Interaction of serum components with poly(methylmethacrylate) nanoparticles and the resulting body distribution after intravenous injection in rats. J. Drug Targeting 1:15–19 (1993).

    Google Scholar 

  27. S. E. Dunn, A. Brindley, S. S. Davis, M. C. Davies, L. Illum. Polystyrene-poly(ethylene glycol) PS-PEG 2000 particles as model systems for site specific drug delivery: The effect of PEG surface density on the in vitro cell interactions and in vivo biodistribution. Pharm. Res., 11:1016–1022 (1994).

    Google Scholar 

  28. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merisko-Liversidge, E., Sarpotdar, P., Bruno, J. et al. Formulation and Antitumor Activity Evaluation of Nanocrystalline Suspensions of Poorly Soluble Anticancer Drugs. Pharm Res 13, 272–278 (1996). https://doi.org/10.1023/A:1016051316815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016051316815

Navigation