Skip to main content
Log in

Oral Controlled Release Technology for Peptides: Status and Future Prospects

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

In spite of significant efforts in academic and commercial laboratories, major breakthroughs in oral peptide and protein formulation have not been achieved. The major barriers to developing oral formulations for peptides and proteins include poor intrinsic permeability, lumenal and cellular enzymatic degradation, rapid clearance, and chemical and conformational stability. Pharmaceutical approaches to address these barriers, which have been successful with traditional, small, organic drug molecules, have not readily translated into effective peptide and protein formulations. The success achieved by Sandoz with cyclosporin formulations remains one clear example of what can be achieved, although it is likely that effective oral formulations for peptides and proteins will remain highly compound specific. Although the challenges are significant, the potential therapeutic benefit remains high, particularly with the increasing identification of potential peptide and protein drug candidates emerging from the biotechnology arena. Successful formulations will most likely require a systematic and careful merger of formulation and design delivery systems which maximize the potential for absorption across the epithelial cell layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Humphrey and P. S. Ringrose. Peptide and related drugs: A review of their absorption, metabolism, and excretion. Drug Metab. Reviews 17:283–310 (1986).

    Google Scholar 

  2. V. H. L. Lee, A. Yamamoto, and U. B. Kompella. Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit. Rev. Ther. Drug Carrier Systems 8:91–192 (1991).

    Google Scholar 

  3. H. P. Merkle. New aspects of pharmaceutical dosage forms for controlled drug delivery of peptides and proteins. Eur. J. Pharm. Sci. 2:19–21 (1994).

    Google Scholar 

  4. C. Lehr. Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract. Crit. Rev. Ther. Drug Carrier Systems 11:119–160 (1994).

    Google Scholar 

  5. J. M. Sarciaux, L. Acar, and P. A. Sado. Using microemulsion formulations for oral drug delivery of therapeutic peptides. Int. J. Pharm. 120:127–136 (1995).

    Google Scholar 

  6. M. J. Humphrey. The oral bioavailability of peptides and related drugs. In S. S. Davis, L. Illum, and E. Thomlinson (eds.), Delivery Systems for Peptide Drugs, pp. 139–151, 1986, Plenum Press, New York.

    Google Scholar 

  7. V. H. L. Lee. Enzymatic barriers to peptide and protein absorption. Crit. Rev. Ther. Drug Carrier Systems 5:69–97 (1988).

    Google Scholar 

  8. S. Yoshioka, L. Caldwell, and T. Higuchi. Enhanced rectal bioavailability of polypeptides using sodium 5-methoxysalicylate as an absorption promoter. J. Pharm. Sci. 71:593–597 (1982).

    Google Scholar 

  9. J. C. Scott-Moncrieff, Z. Shao, and A. K. Mitra. Enhancement of intestinal insulin absorption by bile salt-fatty acid mixed micelles in dogs. J. Pharm. Sci. 83:1465–1469 (1994).

    Google Scholar 

  10. M. J. Cho, J. F. Scieszka, and P. S. Burton. Citric acid as an adjuvant for transepithelial transport. Int. J. Pharm. 52:79–81 (1989).

    Google Scholar 

  11. S. Muranishi, Y. Tokunaga, K. Taniguchi, and H. Sezaki. Potential absorption of heparin from the small intestine and the large intestine in the presence of monoolein mixed micelles. Chem. Pharm. Bull. 25:1159–1163 (1977).

    Google Scholar 

  12. J. A. Fix, K. Engle, P. A. Porter, P. S. Leppert, S. J. Selk, C. R. Gardner, and J. Alexander. Acylcarnitines: drug absorption-enhancing agents in the gastrointestinal tract. Am. J. Physiol. 251:G332–G340 (1986).

    Google Scholar 

  13. Z. Shao, Y. Li, R. Krishnamoorthy, T. Chermak, and A. K. Mitra. Differential effects of anionic, cationic, nonionic, and physiologic surfactant on the dissociation, chymotrypsin degradation, and enteral absorption of insulin hexamers. Pharm. Res. 10:243–250 (1993).

    Google Scholar 

  14. P. P. Constantinides, J. Scalart, C. Lancaster, J. Marcello, G. Marks, H. Ellens, and P. L. Smith. Water-in-oil microemulsions containing medium-chain glyceride: Formulation and absorption evaluation in rat. Proc. Int. Symp. Control. Release Bioactive Mater. 20:184–185 (1993).

    Google Scholar 

  15. E. Bjork, U. Isaksson, P. Edman, and P. Artursson. Starch microspheres induce pulsatile delivery of drugs and peptides across the epithelial barrier by reversible separation of tight junctions. J. Drug Targeting 2:501–507 (1995).

    Google Scholar 

  16. J. A. Fix. Strategies for delivery of peptides utilizing absorption enhancing agents. Meeting Abstract, Conf. on Formulations and Drug Delivery, ACS, Boston (1995).

    Google Scholar 

  17. M. Mesiha and M. Sidhom. Increased oral absorption enhancement of insulin by medium viscosity hydroxypropyl cellulose. Int. J. Pharm. 114:137–140 (1995).

    Google Scholar 

  18. E. A. Hosny, N. M. Khan Ghilzai, and A. H. Al-Dhawalie. Effective intestinal absorption of insulin in diabetic rats using enteric coated capsules containing sodium salicylate. Drug Devel. Ind. Pharm. 21:1583–1589 (1995).

    Google Scholar 

  19. G. Fricker and J. Drewe. Enteral absorption of octreotide: Modulation of intestinal permeability by distinct carbohydrates. J. Pharmacol. Exp. Ther. 274:826–832 (1995).

    Google Scholar 

  20. J. P. F. Bai and G. L. Amidon. Degradation of insulin by trypsin and alpha-chymotrypsin. Pharm. Res. 9:969–978 (1992).

    Google Scholar 

  21. P. Buhlmayer, A. Caselli, W. Fuhrer, R. Goschkler, V. Rasetti, H. Rueger, J. L. Stanton, L. Criscione, and J. M. Wood. Synthesis and biological activity of some transition state inhibitors of human renin. J. Med. Chem. 31:1839 (1988).

    Google Scholar 

  22. A. Yamamato, T. Taniguchi, K. Rikyuu, T. Tsuji, T. Fujita, M. Murakami, and J. Muranishi. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm. Res. 11:1496–1500 (1994).

    Google Scholar 

  23. V. H. L. Lee. Protease inhibitors and penetration enhancers as approaches to modify peptide absorption. J. Controlled Rel. 13:213–223 (1991).

    Google Scholar 

  24. S. Fuiji, T. Yokohama, K. Ikegaya, F. Sato, and N. Yohoo. Promoting effect of the new chymotrypsin inhibitor FK-448 on the intestinal absorption of insulin in rats and dogs. J. Pharm. Pharmacol. 37:545–549 (1985).

    Google Scholar 

  25. A. T. Florence, A. M. Hillery, N. Hussain, and P. U. Jani. Nanoparticles as carriers for oral peptide absorption: Studies on particle uptake and fate. J. Controlled Rel. 36:36–46 (1995).

    Google Scholar 

  26. P. P. Constantinides, C. M. Lancaster, J. Marcello, D. C. Chiossone, D. Orner, I. Hildalgo, P. L. Smith, A. B. Sarkahian, S. H. Yiv, and A. J. Owen. Enhanced intestinal absorption of an RGD peptide from water-in-oil microemulsions of different composition and particle size. J. Controlled Rel. 34:109–116 (1995).

    Google Scholar 

  27. S. Rao and W. A. Ritschel. Colonic drug delivery of small peptides. S.T.P. Pharma Sciences 5:19–29 (1995).

    Google Scholar 

  28. H. Brondsted and J. Kopecek. Hydrogels for site-specific drug delivery to the colon: in vitro and in vivo degradation. Pharm. Res. 9:1540–1545 (1992).

    Google Scholar 

  29. A. Rubinstein, R. Radai, M. Ezra, S. Pathak, and J. S. Rokem. In vitro evaluation of calcium pectinate: a potential colonic-specific drug delivery carrier. Pharm. Res. 10:258–263 (1993).

    Google Scholar 

  30. J. P. F. Bai and L. L. Chang. Transepithelial transport of insulin: I. Insulin degradation by insulin-degrading enzyme in small intestinal epithelium. Pharm. Res. 12:1171–1175 (1995).

    Google Scholar 

  31. Y. Taki, T. Sakane, T. Nadai, H. Sezaki, G. L. Amidon, P. Langguth, and S. Yamashita. Gastrointestinal absorption of peptide drug: Quantitative evaluation of the degradation and the permeation of metkephamid in rat small intestine. J. Pharmacol. Exp. Ther. 274:373–377 (1995).

    Google Scholar 

  32. V. H. L. Lee, S. Dodda-Kashi, G. M. Grass, and W. Rubas. Oral route of peptide and protein drug delivery. In V. H. L. Lee (ed.), Protein and Peptide Drug Delivery, pp. 691–738, 1991, Dekker, New York.

    Google Scholar 

  33. L. Hovgaard, E. J. Mack, and S. W. Kim. Insulin stabilization and GI absorption. J. Controlled Rel. 19:99–108 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fix, J.A. Oral Controlled Release Technology for Peptides: Status and Future Prospects. Pharm Res 13, 1760–1764 (1996). https://doi.org/10.1023/A:1016008419367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016008419367

Navigation